Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
J Neurosci. 2011 Aug 3;31(31):11387-95. doi: 10.1523/JNEUROSCI.0502-11.2011.
The quiver/sleepless (qvr/sss) gene encodes a small, glycosylphosphatidylinositol-anchored protein that plays a critical role in the regulation of sleep in Drosophila. Loss-of-function mutations in qvr/sss severely suppress sleep and effect multiple changes in in situ Shaker K(+) currents, including decreased magnitude, slower time-to-peak, and cumulative inactivation. Recently, we demonstrated that SLEEPLESS (SSS) protein modulates Shaker channel activity, possibly through a direct interaction at the plasma membrane. We show here that SSS accelerates the activation of heterologously expressed Shaker channels with no effect on deactivation or fast N-type inactivation. Furthermore, this SSS-induced acceleration is sensitive to the pharmacological disruption of lipid rafts and sufficiently accounts for the slower time-to-peak of in situ Shaker currents seen in qvr/sss mutants. We also find that SSS decreases the rate of C-type inactivation of heterologously expressed Shaker channels, providing a potential mechanism for the cumulative inactivation phenotype induced by qvr/sss loss-of-function mutations. Kinetic modeling based on the in vitro results suggests that the SSS-dependent regulation of channel kinetics accounts for nearly 40% of the decrease in Shaker current magnitude in flies lacking SSS. Sleep duration in qvr/sss-null mutants is restored to normal by a qvr/sss transgene that fully rescues the Shaker kinetic phenotypes but only partially rescues the decrease in current magnitude. Together, these results suggest that the role of SSS in the regulation of sleep in Drosophila correlates more strongly with the effects of SSS on Shaker kinetics than current magnitude.
颤抖/无眠(qvr/sss)基因编码一种小的糖基磷脂酰肌醇锚定蛋白,在果蝇睡眠调节中起关键作用。qvr/sss 的功能丧失突变严重抑制睡眠,并对 Shaker K+电流的原位产生多种变化,包括幅度减小、峰值时间变慢和累积失活。最近,我们证明 SLEEPLESS(SSS)蛋白调节 Shaker 通道活性,可能通过在质膜上的直接相互作用。我们在这里显示 SSS 加速异源表达的 Shaker 通道的激活,而对失活或快速 N 型失活没有影响。此外,这种 SSS 诱导的加速对脂质筏的药理学破坏敏感,并足以解释 qvr/sss 突变体中观察到的 Shaker 电流的峰值时间变慢。我们还发现 SSS 降低异源表达的 Shaker 通道的 C 型失活率,为 qvr/sss 功能丧失突变诱导的累积失活表型提供了一种潜在机制。基于体外结果的动力学建模表明,SSS 对通道动力学的调节解释了缺乏 SSS 的果蝇中 Shaker 电流幅度下降的近 40%。qvr/sss 缺失突变体的睡眠时间通过 qvr/sss 转基因恢复正常,该转基因完全挽救了 Shaker 动力学表型,但仅部分挽救了电流幅度的下降。这些结果表明,SSS 在果蝇睡眠调节中的作用与 SSS 对 Shaker 动力学的影响比电流幅度更密切相关。