Watson Scott M D, Pike Andrew R, Pate Jonathan, Houlton Andrew, Horrocks Benjamin R
Chemical Nanoscience Laboratory, School of Chemistry, Bedson Building, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
Nanoscale. 2014 Apr 21;6(8):4027-37. doi: 10.1039/c3nr06767j.
DNA-templating has been used to create nanowires from metals, compound semiconductors and conductive polymers. The mechanism of growth involves nucleation at binding sites on the DNA followed by growth of spherical particles and then, under favourable conditions, a slow transformation to a smooth nanowire. The final transformation is favoured by restricting the amount of templated material per unit length of template and occurs most readily for materials of low surface tension. Electrical measurements on DNA-templated nanowires can be facilitated using three techniques: (i) standard current-voltage measurements with contact electrodes embedded in a dielectric so that there is a minimal step height at the dielectric/electrode boundary across which nanowires may be aligned by molecular combing, (ii) the use of a dried droplet technique and conductive AFM to determine contact resistance by moving the tip along the length of an individual nanowire and (iii) non-contact assessment of conductivity by scanned conductance microscopy on Si/SiO2 substrates.
DNA模板法已被用于从金属、化合物半导体和导电聚合物制备纳米线。生长机制包括在DNA上的结合位点处成核,随后球形颗粒生长,然后在有利条件下缓慢转变为光滑的纳米线。通过限制每单位长度模板上的模板化材料量有利于最终转变,并且对于低表面张力的材料最容易发生。对DNA模板化纳米线的电学测量可以使用三种技术来实现:(i)使用嵌入电介质中的接触电极进行标准电流-电压测量,使得在电介质/电极边界处的台阶高度最小,纳米线可以通过分子梳整在此边界处排列;(ii)使用干燥液滴技术和导电原子力显微镜,通过沿着单个纳米线的长度移动尖端来确定接触电阻;(iii)通过在Si/SiO2衬底上进行扫描电导显微镜对电导率进行非接触评估。