Choi Jong Seob, Park Hye Bin, Tsui Jonathan H, Hong Byungyou, Kim Deok-Ho, Kim Hyung Jin
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205 USA.
Digital Healthcare Research Center, Gumi Electronics and Information Technology Research Institute (GERI), 350-27, Gumidaero, Gumi, Gyeongbuk, 39253 South Korea.
Microsyst Nanoeng. 2020 Nov 2;6:91. doi: 10.1038/s41378-020-00202-5. eCollection 2020.
We report on a simple and efficient method for the selective positioning of Au/DNA hybrid nanocircuits using a sequential combination of electron-beam lithography (EBL), plasma ashing, and a molecular patterning process. The nanostructures produced by the EBL and ashing process could be uniformly formed over a 12.6 in substrate with sub-10 nm patterning with good pattern fidelity. In addition, DNA molecules were immobilized on the selectively nanopatterned regions by alternating surface coating procedures of 3-(aminopropyl)triethoxysilane (APS) and diamond like carbon (DLC), followed by deposition of DNA molecules into a well-defined single DNA nanowire. These single DNA nanowires were used not only for fabricating Au/DNA hybrid nanowires by the conjugation of Au nanoparticles with DNA, but also for the formation of Au/DNA hybrid nanocircuits. These nanocircuits prepared from Au/DNA hybrid nanowires demonstrate conductivities of up to 4.3 × 10 S/m in stable electrical performance. This selective and precise positioning method capable of controlling the size of nanostructures may find application in making sub-10 nm DNA wires and metal/DNA hybrid nanocircuits.
我们报道了一种简单高效的方法,通过电子束光刻(EBL)、等离子体灰化和分子图案化工艺的顺序组合来选择性定位金/DNA杂化纳米电路。通过EBL和灰化工艺产生的纳米结构可以在12.6英寸的衬底上均匀形成,具有小于10纳米的图案,且图案保真度良好。此外,通过3-(氨丙基)三乙氧基硅烷(APS)和类金刚石碳(DLC)的交替表面涂层程序,将DNA分子固定在选择性纳米图案化区域,随后将DNA分子沉积到明确的单根DNA纳米线中。这些单根DNA纳米线不仅用于通过金纳米颗粒与DNA的共轭制备金/DNA杂化纳米线,还用于形成金/DNA杂化纳米电路。由金/DNA杂化纳米线制备的这些纳米电路在稳定的电学性能中表现出高达4.3×10 S/m的电导率。这种能够控制纳米结构尺寸的选择性和精确的定位方法可能在制造小于10纳米的DNA线和金属/DNA杂化纳米电路中找到应用。