Lahmiri Salim, Boukadoum Mounir
Biomed Tech (Berl). 2014 Aug;59(4):357-66. doi: 10.1515/bmt-2013-0082.
This work presents a new automated system to detect circinate exudates in retina digital images. It operates as follows: the true color image is converted to gray levels, and contrast-limited adaptive histogram equalization (CLAHE) is applied to it before undergoing empirical mode decomposition (EMD) as intrinsic mode functions (IMFs). The entropies and uniformities of the first two IMFs are then computed to form a feature vector that is fed to a support vector machine (SVM) for classification. The experimental results using a set of 45 images (23 normal images and 22 images with circinate exudates taken from the STARE database) and tenfold cross-validation indicate that the proposed approach outperforms previous works found in the literature, with perfect classification. In addition, the image processing time was <4 min, making the presented circinate exudate detection system fit for use in a clinical environment.
这项工作提出了一种用于检测视网膜数字图像中环状渗出物的新型自动化系统。其工作方式如下:将真彩色图像转换为灰度级,在进行经验模态分解(EMD)以得到本征模态函数(IMF)之前,先对其应用对比度受限自适应直方图均衡化(CLAHE)。然后计算前两个IMF的熵和均匀性,以形成一个特征向量,该特征向量被输入到支持向量机(SVM)进行分类。使用一组45幅图像(23幅正常图像和22幅从STARE数据库中获取的带有环状渗出物的图像)以及十折交叉验证的实验结果表明,所提出的方法优于文献中先前的工作,具有完美的分类效果。此外,图像处理时间小于4分钟,使得所提出的环状渗出物检测系统适用于临床环境。