Suppr超能文献

运用定量和分析脑电图方法理解自闭症谱系障碍中的连接:混合过度和连接不足的理论。

Using quantitative and analytic EEG methods in the understanding of connectivity in autism spectrum disorders: a theory of mixed over- and under-connectivity.

机构信息

Neurorehabilitation and Neuropsychological Services Massapequa Park, NY, USA ; Integrated Neuroscience Services Fayetteville, AR, USA.

Center for Mind and Brain, University of California Davis, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, CA, USA.

出版信息

Front Hum Neurosci. 2014 Feb 26;8:45. doi: 10.3389/fnhum.2014.00045. eCollection 2014.

Abstract

Neuroimaging technologies and research has shown that autism is largely a disorder of neuronal connectivity. While advanced work is being done with fMRI, MRI-DTI, SPECT and other forms of structural and functional connectivity analyses, the use of EEG for these purposes is of additional great utility. Cantor et al. (1986) were the first to examine the utility of pairwise coherence measures for depicting connectivity impairments in autism. Since that time research has shown a combination of mixed over and under-connectivity that is at the heart of the primary symptoms of this multifaceted disorder. Nevertheless, there is reason to believe that these simplistic pairwise measurements under represent the true and quite complicated picture of connectivity anomalies in these persons. We have presented three different forms of multivariate connectivity analysis with increasing levels of sophistication (including one based on principle components analysis, sLORETA source coherence, and Granger causality) to present a hypothesis that more advanced statistical approaches to EEG coherence analysis may provide more detailed and accurate information than pairwise measurements. A single case study is examined with findings from MR-DTI, pairwise and coherence and these three forms of multivariate coherence analysis. In this case pairwise coherences did not resemble structural connectivity, whereas multivariate measures did. The possible advantages and disadvantages of different techniques are discussed. Future work in this area will be important to determine the validity and utility of these techniques.

摘要

神经影像学技术和研究表明,自闭症在很大程度上是一种神经元连接的紊乱。虽然功能磁共振成像(fMRI)、磁共振弥散张量成像(DTI)、单光子发射计算机断层扫描(SPECT)和其他形式的结构和功能连接分析等先进技术正在得到应用,但脑电图(EEG)在这些方面的应用具有额外的巨大效用。Cantor 等人(1986 年)首次研究了成对相干测量在描绘自闭症连接障碍方面的效用。从那时起,研究表明,这种多方面障碍的主要症状的核心是混合过度和连接不足的结合。然而,有理由相信,这些简单的成对测量并不能代表这些人连接异常的真实而复杂的情况。我们提出了三种不同形式的具有不同复杂程度的多变量连接分析(包括基于主成分分析、sLORETA 源相干和格兰杰因果关系的分析),提出了一个假设,即更先进的 EEG 相干分析统计方法可能比成对测量提供更详细和准确的信息。对一个单一的病例研究进行了检查,结果来自磁共振弥散张量成像(MR-DTI)、成对和相干以及这三种形式的多变量相干分析。在这种情况下,成对相干并不类似于结构连接,而多变量测量则是如此。讨论了不同技术的可能优点和缺点。该领域的未来工作对于确定这些技术的有效性和实用性非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc47/3935255/0e8bee43bcd5/fnhum-08-00045-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验