Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
EMBO J. 2014 Apr 16;33(8):921-35. doi: 10.1002/embj.201387205. Epub 2014 Mar 11.
With eukaryotic genome replication, incomplete telomere synthesis results in chromosome shortening and eventual compromise of genome stability. Telomerase counteracts this terminal sequence loss by synthesizing telomeric repeats through repeated cycles of reverse transcription of its internal RNA template. Using human telomerase domain-complementation assays for telomerase reverse transcriptase protein (TERT) and RNA in combination with the first direct footprinting assay for telomerase association with bound DNA, we resolve mechanisms by which TERT domains and RNA motifs direct repeat synthesis. Surprisingly, we find that product-template hybrid is sensed in a length- and sequence-dependent manner to set the template 5' boundary. We demonstrate that the TERT N-terminal (TEN) domain determines active-site use of the atypically short primer-template hybrid necessary for telomeric-repeat synthesis. Also against expectation, we show that the remainder of TERT (the TERT ring) supports functional recognition and physical protection of single-stranded DNA adjacent to the template hybrid. These findings establish unprecedented polymerase recognition specificities for DNA-RNA hybrid and single-stranded DNA and suggest a new perspective on the mechanisms of telomerase specialization for telomeric-repeat synthesis.
在真核生物基因组复制过程中,不完全的端粒合成会导致染色体缩短,最终影响基因组的稳定性。端粒酶通过重复逆转录其内部 RNA 模板来合成端粒重复序列,从而抵消这种末端序列的丢失。我们使用人端粒酶结构域互补测定法来测定端粒酶逆转录酶蛋白(TERT)和 RNA,结合首次直接足迹测定法来测定端粒酶与结合 DNA 的关联,从而解析 TERT 结构域和 RNA 基序指导重复合成的机制。令人惊讶的是,我们发现产物-模板杂交体以长度和序列依赖的方式被感知,从而确定模板的 5'边界。我们证明 TERT N 端结构域(TEN 结构域)决定了使用非典型短引物-模板杂交体的活性位点,这对于端粒重复合成是必需的。同样出人意料的是,我们表明 TERT 的其余部分(TERT 环)支持对模板杂交体附近的单链 DNA 的功能识别和物理保护。这些发现为 DNA-RNA 杂交体和单链 DNA 的聚合酶识别特异性确立了前所未有的标准,并为端粒酶专门化用于端粒重复合成的机制提供了新的视角。