Wang Jack P, Naik Punith P, Chen Hsi-Chuan, Shi Rui, Lin Chien-Yuan, Liu Jie, Shuford Christopher M, Li Quanzi, Sun Ying-Hsuan, Tunlaya-Anukit Sermsawat, Williams Cranos M, Muddiman David C, Ducoste Joel J, Sederoff Ronald R, Chiang Vincent L
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
Plant Cell. 2014 Mar;26(3):894-914. doi: 10.1105/tpc.113.120881. Epub 2014 Mar 11.
We established a predictive kinetic metabolic-flux model for the 21 enzymes and 24 metabolites of the monolignol biosynthetic pathway using Populus trichocarpa secondary differentiating xylem. To establish this model, a comprehensive study was performed to obtain the reaction and inhibition kinetic parameters of all 21 enzymes based on functional recombinant proteins. A total of 104 Michaelis-Menten kinetic parameters and 85 inhibition kinetic parameters were derived from these enzymes. Through mass spectrometry, we obtained the absolute quantities of all 21 pathway enzymes in the secondary differentiating xylem. This extensive experimental data set, generated from a single tissue specialized in wood formation, was used to construct the predictive kinetic metabolic-flux model to provide a comprehensive mathematical description of the monolignol biosynthetic pathway. The model was validated using experimental data from transgenic P. trichocarpa plants. The model predicts how pathway enzymes affect lignin content and composition, explains a long-standing paradox regarding the regulation of monolignol subunit ratios in lignin, and reveals novel mechanisms involved in the regulation of lignin biosynthesis. This model provides an explanation of the effects of genetic and transgenic perturbations of the monolignol biosynthetic pathway in flowering plants.
我们利用毛果杨次生分化木质部,为单木质醇生物合成途径中的21种酶和24种代谢物建立了一个预测性动力学代谢通量模型。为建立该模型,我们基于功能性重组蛋白进行了全面研究,以获取所有21种酶的反应和抑制动力学参数。从这些酶中总共得出了104个米氏动力学参数和85个抑制动力学参数。通过质谱分析,我们获得了次生分化木质部中所有21种途径酶的绝对含量。这个从专门用于木材形成的单一组织产生的广泛实验数据集,被用于构建预测性动力学代谢通量模型,以提供对单木质醇生物合成途径的全面数学描述。该模型使用来自转基因毛果杨植物的实验数据进行了验证。该模型预测了途径酶如何影响木质素含量和组成,解释了一个长期存在的关于木质素中单木质醇亚基比例调控的悖论,并揭示了参与木质素生物合成调控的新机制。该模型解释了开花植物中单木质醇生物合成途径的遗传和转基因扰动的影响。