Buzzulini Francesca, Rigon Amelia, Soda Paolo, Onofri Leonardo, Infantino Maria, Arcarese Luisa, Iannello Giulio, Afeltra Antonella
Arthritis Res Ther. 2014 Mar 14;16(2):R71. doi: 10.1186/ar4510.
In recent years, there has been an increased demand for computer-aided diagnosis (CAD) tools to support clinicians in the field of indirect immunofluorescence. To this aim, academic and industrial research is focusing on detecting antinuclear, anti-neutrophil, and anti-double-stranded (anti-dsDNA) antibodies. Within this framework, we present a CAD system for automatic analysis of dsDNA antibody images using a multi-step classification approach. The final classification of a well is based on the classification of all its images, and each image is classified on the basis of the labeling of its cells.
We populated a database of 342 images--74 positive (21.6%) and 268 negative (78.4%)-- belonging to 63 consecutive sera: 15 positive (23.8%) and 48 negative (76.2%). We assessed system performance by using k-fold cross-validation. Furthermore, we successfully validated the recognition system on 83 consecutive sera, collected by using different equipment in a referral center, counting 279 images: 92 positive (33.0%) and 187 negative (67.0%).
With respect to well classification, the system correctly classified 98.4% of wells (62 out of 63). Integrating information from multiple images of the same wells recovers the possible misclassifications that occurred at the previous steps (cell and image classification). This system, validated in a clinical routine fashion, provides recognition accuracy equal to 100%.
The data obtained show that automation is a viable alternative for Crithidia luciliae immunofluorescence test analysis.
近年来,在间接免疫荧光领域,对支持临床医生的计算机辅助诊断(CAD)工具的需求不断增加。为此,学术和工业研究都聚焦于检测抗核抗体、抗中性粒细胞抗体和抗双链(抗dsDNA)抗体。在此框架内,我们提出了一种使用多步分类方法自动分析dsDNA抗体图像的CAD系统。孔的最终分类基于其所有图像的分类,而每张图像则根据其细胞的标记进行分类。
我们构建了一个包含342张图像的数据库——74张阳性(21.6%)和268张阴性(78.4%)——属于63份连续血清:15份阳性(23.8%)和48份阴性(76.2%)。我们通过k折交叉验证来评估系统性能。此外,我们在一个转诊中心使用不同设备收集的83份连续血清上成功验证了识别系统,这些血清包含了279张图像:92张阳性(33.0%)和187张阴性(67.0%)。
关于孔的分类,系统正确分类了98.4%的孔(63个中的62个)。整合来自同一孔的多个图像的信息可以纠正前几步(细胞和图像分类)中可能出现的错误分类。这个以临床常规方式验证的系统提供了100%的识别准确率。
所获得的数据表明,自动化是利什曼原虫免疫荧光试验分析的一种可行替代方法。