Pyayt Alexander L, Kozionov Alexey P, Mokhov Ilya I, Lang Bernhard, Meijer Robert J, Krzhizhanovskaya Valeria V, Sloot Peter M A
Siemens LLC, Corporate Technology, Volynskiy lane 3A, St. Petersburg, 191186, Russia.
Siemens AG, Corporate Technology, Muenchen, 80200, Germany.
Sensors (Basel). 2014 Mar 12;14(3):5147-73. doi: 10.3390/s140305147.
Detection of early warning signals for the imminent failure of large and complex engineered structures is a daunting challenge with many open research questions. In this paper we report on novel ways to perform Structural Health Monitoring (SHM) of flood protection systems (levees, earthen dikes and concrete dams) using sensor data. We present a robust data-driven anomaly detection method that combines time-frequency feature extraction, using wavelet analysis and phase shift, with one-sided classification techniques to identify the onset of failure anomalies in real-time sensor measurements. The methodology has been successfully tested at three operational levees. We detected a dam leakage in the retaining dam (Germany) and "strange" behaviour of sensors installed in a Boston levee (UK) and a Rhine levee (Germany).
检测大型复杂工程结构即将失效的预警信号是一项艰巨的挑战,存在许多未解决的研究问题。在本文中,我们报告了利用传感器数据对防洪系统(堤坝、土堤和混凝土坝)进行结构健康监测(SHM)的新方法。我们提出了一种强大的数据驱动异常检测方法,该方法将使用小波分析和相移的时频特征提取与单边分类技术相结合,以识别实时传感器测量中的失效异常的开始。该方法已在三个运行中的堤坝上成功测试。我们在德国的一座拦河坝中检测到了坝体渗漏,以及在英国波士顿的一座堤坝和德国莱茵河的一座堤坝中安装的传感器的“异常”行为。