C. L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA.
Chem Soc Rev. 2014 Jul 21;43(14):5009-31. doi: 10.1039/c3cs60447k.
The widely used C-H functionalization strategies and some complexities in the Pd-catalyzed chemical transformations were analyzed. It was emphasized that in the course of catalysis various Pd-intermediates (including nano-scale Pd-clusters) could act as active catalysts. However, both identification of these catalytically active species and determination of factors controlling the overall catalytic process require more comprehensive and multi-disciplinary approaches. Recent joint computational and experimental approaches were instrumental in: (1) demonstrating that the addition of Pd(OAc)2 as a catalyst precursor to RSeH and RSH reagents forms the [Pd(SeR)2]n and [Pd(SR)2]n clusters, respectively, which show an unprecedented ability for selective synthesis of Markovnikov-type products starting with a mixture of reagents RSH/RSeH and acetylenic hydrocarbons; (2) predicting a valid mechanism of the amino acid ligand-assisted Pd(II)-catalyzed C-H activation that is shown to proceed via the formation of the catalytically active Pd(II) intermediate with a bidentately coordinated dianionic amino acid ligand; (3) demonstrating that the amino acid ligand plays crucial roles in the ligand-assisted Pd(II)-catalyzed C-H activation by acting as: (a) a weakly coordinating ligand to stabilize the desirable Pd(II)-precatalyst, (b) a soft proton donor and a bidentately coordinated dianionic ligand in the catalytically active Pd(II) intermediate, and (c) a proton acceptor accelerating the C-H deprotonation via the CMD mechanism; and (4) revealing the roles of the CsF base (and "cesium effect") in the Pd(0)/PCy3-catalyzed intermolecular arylation of the terminal β-C(sp(3))-H bond of aryl amide and predicting the unprecedented "Cs2-I-F cluster" assisted mechanism for this reaction.
广泛使用的 C-H 功能化策略和 Pd 催化化学转化中的一些复杂性进行了分析。强调了在催化过程中,各种 Pd 中间体(包括纳米级 Pd 簇)可以作为活性催化剂。然而,识别这些催化活性物种和确定控制整个催化过程的因素都需要更全面和多学科的方法。最近的联合计算和实验方法在以下方面发挥了重要作用:(1)证明 Pd(OAc)2 作为催化剂前体添加到 RSeH 和 RSH 试剂中,分别形成 [Pd(SeR)2]n 和 [Pd(SR)2]n 簇,这些簇具有前所未有的能力,可以从 RSH/RSeH 和炔烃混合物开始选择性合成 Markovnikov 型产物;(2)预测氨基酸配体辅助 Pd(II)-催化 C-H 活化的有效机制,该机制被证明是通过形成具有双配位二阴离子氨基酸配体的催化活性 Pd(II)中间体进行的;(3)证明氨基酸配体在氨基酸配体辅助 Pd(II)-催化 C-H 活化中起着关键作用,其作用是:(a) 作为弱配位配体稳定所需的 Pd(II)-前催化剂,(b) 作为催化活性 Pd(II)中间体中的软质子供体和双配位二阴离子配体,以及 (c) 通过 CMD 机制加速 C-H 去质子化的质子受体;(4)揭示 CsF 碱(和“铯效应”)在 Pd(0)/PCy3 催化的末端β-C(sp(3))-H 键芳基酰胺的分子间芳基化反应中的作用,并预测该反应前所未有的“Cs2-I-F 簇”辅助机制。