Vijay Solomon Rajadurai, Angeline Vedha Swaminathan, Venuvanalingam Ponnambalam
Theoretical & Computational Chemistry Laboratory, School of Chemistry, Bharathidasan University, Tiruchirappalli - 24, Tamil Nadu, India.
Phys Chem Chem Phys. 2014 Apr 28;16(16):7430-40. doi: 10.1039/c3cp54442g.
The halogen bond is relatively a less characterized intermolecular interaction compared to the hydrogen bond and the structure, stability and electronic structures of halogenated base pairs, particularly at the wobble junction have been investigated using DFT. Three halogens, namely Cl, Br and I, have been tested for their role in such situations with uracil as the anticodon base. Computed results reveal that when halogen atoms replace protons in the hydrogen bonding positions they induce lot of geometric changes that flip some of the observed base pairs into unobserved base pairs and vice versa. NCI, NBO and AIM analyses explain these changes at the electronic level. The new codons will have lot of impact in future applications, particularly in self assembly of biomaterials and t-RNA synthetic strategies.
与氢键相比,卤键是一种特征相对不那么明显的分子间相互作用,并且已经使用密度泛函理论(DFT)研究了卤代碱基对的结构、稳定性和电子结构,特别是在摆动连接处。已经测试了三种卤素,即氯(Cl)、溴(Br)和碘(I)在以尿嘧啶作为反密码子碱基的此类情况下所起的作用。计算结果表明,当卤素原子取代氢键位置中的质子时,它们会引发许多几何变化,这些变化会使一些观察到的碱基对转变为未观察到的碱基对,反之亦然。自然键轨道(NBO)分析和分子中的原子(AIM)分析在电子层面解释了这些变化。新的密码子在未来的应用中将有很大影响,特别是在生物材料的自组装和转运核糖核酸(t-RNA)合成策略方面。