Helliwell Katherine E, Scaife Mark A, Sasso Severin, Araujo Ana Paula Ulian, Purton Saul, Smith Alison G
Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom.
Plant Physiol. 2014 May;165(1):388-97. doi: 10.1104/pp.113.234369. Epub 2014 Mar 13.
Photosynthetic microalgae play a vital role in primary productivity and biogeochemical cycling in both marine and freshwater systems across the globe. However, the growth of these cosmopolitan organisms depends on the bioavailability of nutrients such as vitamins. Approximately one-half of all microalgal species requires vitamin B12 as a growth supplement. The major determinant of algal B12 requirements is defined by the isoform of methionine synthase possessed by an alga, such that the presence of the B12-independent methionine synthase (METE) enables growth without this vitamin. Moreover, the widespread but phylogenetically unrelated distribution of B12 auxotrophy across the algal lineages suggests that the METE gene has been lost multiple times in evolution. Given that METE expression is repressed by the presence of B12, prolonged repression by a reliable source of the vitamin could lead to the accumulation of mutations and eventually gene loss. Here, we probe METE gene regulation by B12 and methionine/folate cycle metabolites in both marine and freshwater microalgal species. In addition, we identify a B12-responsive element of Chlamydomonas reinhardtii METE using a reporter gene approach. We show that complete repression of the reporter occurs via a region spanning -574 to -90 bp upstream of the METE start codon. A proteomics study reveals that two other genes (S-Adenosylhomocysteine hydrolase and Serine hydroxymethyltransferase2) involved in the methionine-folate cycle are also repressed by B12 in C. reinhardtii. The strong repressible nature and high sensitivity of the B12-responsive element has promising biotechnological applications as a cost-effective regulatory gene expression tool.
光合微藻在全球海洋和淡水系统的初级生产力和生物地球化学循环中发挥着至关重要的作用。然而,这些分布广泛的生物体的生长取决于维生素等营养物质的生物可利用性。大约一半的微藻物种需要维生素B12作为生长补充剂。藻类对B12需求的主要决定因素由藻类所拥有的甲硫氨酸合酶的同工型定义,因此,不依赖B12的甲硫氨酸合酶(METE)的存在使得藻类在没有这种维生素的情况下也能生长。此外,B12营养缺陷型在藻类谱系中广泛但系统发育上不相关的分布表明,METE基因在进化过程中多次丢失。鉴于METE的表达受到B12的抑制,维生素可靠来源的长期抑制可能导致突变积累并最终导致基因丢失。在这里,我们探究了海洋和淡水微藻物种中B12以及甲硫氨酸/叶酸循环代谢物对METE基因的调控。此外,我们使用报告基因方法鉴定了莱茵衣藻METE的一个B12反应元件。我们表明,报告基因的完全抑制通过METE起始密码子上游-574至-90 bp的区域发生。蛋白质组学研究表明,参与甲硫氨酸-叶酸循环的另外两个基因(S-腺苷同型半胱氨酸水解酶和丝氨酸羟甲基转移酶2)在莱茵衣藻中也受到B12的抑制。B12反应元件的强抑制性质和高敏感性作为一种经济高效的调控基因表达工具具有广阔的生物技术应用前景。