Liu Dong-Feng, Ai Guo-Min, Zheng Qing-Xiang, Liu Chang, Jiang Cheng-Ying, Liu Li-Xia, Zhang Bo, Liu Yi-Ming, Yang Chen, Liu Shuang-Jiang
State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
Microb Cell Fact. 2014 Mar 14;13(1):40. doi: 10.1186/1475-2859-13-40.
Shikimic acid (SA) is a key chiral starting molecule for the synthesis of the neuramidase inhibitor GS4104 against viral influenza. Microbial production of SA has been extensively investigated in Escherichia coli, and to a less extent in Bacillus subtilis. However, metabolic flux of the high SA-producing strains has not been explored. In this study, we constructed with genetic manipulation and further determined metabolic flux with 13C-labeling test of high SA-producing B. subtilis strains.
B. subtilis 1A474 had a mutation in SA kinase gene (aroI) and accumulated 1.5 g/L of SA. Overexpression of plasmid-encoded aroA, aroB, aroC or aroD in B. subtilis revealed that aroD had the most significantly positive effects on SA production. Simultaneous overexpression of genes for 3-deoxy-D-arabinoheptulosonate-7-phosphate synthase (aroA) and SA dehydrogenase (aroD) in B. subtilis BSSA/pSAAroA/pDGSAAroD resulted in SA production of 3.2 g/L. 13C-Metabolic flux assay (MFA) on the two strains BSSA/pHCMC04/pDG148-stu and BSSA/pSAAroA/pDGSAAroD indicated the carbon flux from glucose to SA increased to 4.6% in BSSA/pSAAroA/pDGSAAroD from 1.9% in strain BSSA/pHCMC04/pDG148-stu. The carbon flux through tricarboxylic acid cycle significantly reduced, while responses of the pentose phosphate pathway and the glycolysis to high SA production were rather weak, in the strain BSSA/pSAAroA/pDGSAAroD. Based on the results from MFA, two potential targets for further optimization of SA production were identified. Experiments on genetic deletion of phosphoenoylpyruvate kinase gene confirmed its positive influence on SA production, while the overexpression of the transketolase gene did not lead to increase in SA production.
Of the genes involved in shikimate pathway in B. subtilis, aroD exerted most significant influence on SA accumulation. Overexpression of plasmid-encoded aroA and aroD doubled SA production than its parent strain. MFA revealed metabolic flux redistribution among phosphate pentose pathway, glycolysis, TCA cycle in the low and high SA-producing B. subtilis strains. The high SA producing strain BSSA/pSAAroA/pDGSAAroD had increased carbon flux into shikimate pathway and reduced flux into TCA cycle.
莽草酸(SA)是合成抗甲型流感病毒神经氨酸酶抑制剂GS4104的关键手性起始分子。在大肠杆菌中已对SA的微生物生产进行了广泛研究,而在枯草芽孢杆菌中的研究较少。然而,高产SA菌株的代谢通量尚未得到探索。在本研究中,我们通过基因操作构建了高产SA的枯草芽孢杆菌菌株,并通过¹³C标记试验进一步测定了其代谢通量。
枯草芽孢杆菌1A474的SA激酶基因(aroI)发生突变,积累了1.5 g/L的SA。在枯草芽孢杆菌中过表达质粒编码的aroA、aroB、aroC或aroD,结果表明aroD对SA的产生具有最显著的正向影响。在枯草芽孢杆菌BSSA/pSAAroA/pDGSAAroD中同时过表达3-脱氧-D-阿拉伯庚酮糖-7-磷酸合酶(aroA)和SA脱氢酶(aroD)基因,可使SA产量达到3.2 g/L。对BSSA/pHCMC04/pDG148-stu和BSSA/pSAAroA/pDGSAAroD这两个菌株进行¹³C代谢通量分析(MFA),结果表明,从葡萄糖到SA的碳通量在BSSA/pSAAroA/pDGSAAroD中从菌株BSSA/pHCMC04/pDG148-stu中的1.9%增加到了4.6%。在菌株BSSA/pSAAroA/pDGSAAroD中,通过三羧酸循环的碳通量显著降低,而磷酸戊糖途径和糖酵解对高产SA的响应较弱。基于MFA的结果,确定了两个进一步优化SA生产的潜在靶点。磷酸烯醇丙酮酸激酶基因的基因缺失实验证实了其对SA生产的积极影响,而过表达转酮醇酶基因并未导致SA产量增加。
在枯草芽孢杆菌参与莽草酸途径的基因中,aroD对SA积累的影响最为显著。质粒编码的aroA和aroD过表达使SA产量比其亲本菌株增加了一倍。MFA揭示了低产和高产SA的枯草芽孢杆菌菌株在磷酸戊糖途径、糖酵解、三羧酸循环之间的代谢通量重新分布。高产SA菌株BSSA/pSAAroA/pDGSAAroD增加了进入莽草酸途径的碳通量,减少了进入三羧酸循环的通量。