Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
Biotechnol J. 2017 Oct;12(10). doi: 10.1002/biot.201700020. Epub 2017 Aug 14.
N-acetylglucosamine (GlcNAc) is an important amino sugar extensively used in the healthcare field. In a previous study, the recombinant Bacillus subtilis strain BSGN6-P -glmS-pP43NMK-GNA1 (BN0-GNA1) had been constructed for microbial production of GlcNAc by pathway design and modular optimization. Here, the production of GlcNAc is further improved by rewiring both the glucose transportation and central metabolic pathways. First, the phosphotransferase system (PTS) is blocked by deletion of three genes, yyzE (encoding the PTS system transporter subunit IIA YyzE), ypqE (encoding the PTS system transporter subunit IIA YpqE), and ptsG (encoding the PTS system glucose-specific EIICBA component), resulting in 47.6% increase in the GlcNAc titer (from 6.5 ± 0.25 to 9.6 ± 0.16 g L ) in shake flasks. Then, reinforcement of the expression of the glcP and glcK genes and optimization of glucose facilitator proteins are performed to promote glucose import and phosphorylation. Next, the competitive pathways for GlcNAc synthesis, namely glycolysis, peptidoglycan synthesis pathway, pentose phosphate pathway, and tricarboxylic acid cycle, are repressed by initiation codon-optimization strategies, and the GlcNAc titer in shake flasks is improved from 10.8 ± 0.25 to 13.2 ± 0.31 g L . Finally, the GlcNAc titer is further increased to 42.1 ± 1.1 g L in a 3-L fed-batch bioreactor, which is 1.72-fold that of the original strain, BN0-GNA1. This study shows considerably enhanced GlcNAc production, and the metabolic engineering strategy described here will be useful for engineering other prokaryotic microorganisms for the production of GlcNAc and related molecules.
N-乙酰氨基葡萄糖(GlcNAc)是一种重要的氨基糖,广泛应用于医疗保健领域。在之前的研究中,通过途径设计和模块化优化,构建了重组枯草芽孢杆菌菌株 BSGN6-P-glmS-pP43NMK-GNA1(BN0-GNA1)用于微生物生产 GlcNAc。在这里,通过重新布线葡萄糖运输和中心代谢途径进一步提高了 GlcNAc 的产量。首先,通过删除三个基因 yyzE(编码 PTS 系统转运体亚基 IIA YyzE)、ypqE(编码 PTS 系统转运体亚基 IIA YpqE)和 ptsG(编码 PTS 系统葡萄糖特异性 EIICBA 组件),阻断磷酸转移酶系统(PTS),导致 GlcNAc 产量增加 47.6%(从 6.5±0.25 增加到 9.6±0.16 g/L)在摇瓶中。然后,增强 glcP 和 glcK 基因的表达并优化葡萄糖促进蛋白,以促进葡萄糖的摄取和磷酸化。接下来,通过起始密码子优化策略抑制 GlcNAc 合成的竞争途径,即糖酵解、肽聚糖合成途径、戊糖磷酸途径和三羧酸循环,摇瓶中的 GlcNAc 产量从 10.8±0.25 增加到 13.2±0.31 g/L。最后,在 3-L 补料分批生物反应器中进一步将 GlcNAc 产量提高到 42.1±1.1 g/L,是原始菌株 BN0-GNA1 的 1.72 倍。本研究表明 GlcNAc 的产量有了显著提高,这里描述的代谢工程策略将有助于工程其他原核微生物生产 GlcNAc 和相关分子。