Tai Kaiping, Sun Ke, Huang Bo, Dillon Shen J
Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), Shenyang 110016, People's Republic of China.
Nanotechnology. 2014 Apr 11;25(14):145603. doi: 10.1088/0957-4484/25/14/145603. Epub 2014 Mar 14.
A simple, low-cost and scalable route to substrate-supported nanowire growth is reported based on catalyzed oxidation. The process shares common features with popular catalyzed nanowire growth techniques such as vapor-liquid-solid (VLS), vapor-solid-solid (VSS), or vapor-quasi-solid (VQS) that use catalyst nanoparticles to direct the deposition of reactants from the vapor phase. Catalyzed oxidation for nanowire growth (CONG) utilizes catalyzed anion (e.g. O2) reduction from the vapor phase and metal (e.g. Fe) oxidation from the substrate to produce oxide nanowires (e.g. Fe3O4). The approach represents a new class of nanowire growth methodology that may be applied to a broad range of systems. CONG does not require expensive chemical vapor deposition or physical vapor deposition equipment and can be implemented at intermediate temperatures (400-600 °C) in a standard laboratory furnace. This work also demonstrates a passive approach to catalyst deposition that allows the process to be implemented simply with no lithography or physical vapor deposition steps. This effort validates the general approach by synthesizing MnO, Fe3O4, WO3, MgO, TiO2, ZnO, ReO3, and NiO nanowires via CONG. The process produces single crystalline nanowires that can be grown to high aspect ratio and as high-density nanowire forests. Applications of the as-grown Fe3O4 and ReO3 nanowires for lithium ion battery systems are demonstrated to display high areal energy density and power.
报道了一种基于催化氧化的简单、低成本且可扩展的衬底支撑纳米线生长方法。该过程与诸如气-液-固(VLS)、气-固-固(VSS)或气-准-固(VQS)等流行的催化纳米线生长技术具有共同特征,这些技术使用催化剂纳米颗粒来引导反应物从气相沉积。用于纳米线生长的催化氧化(CONG)利用气相中催化阴离子(如O2)的还原和衬底中金属(如Fe)的氧化来制备氧化物纳米线(如Fe3O4)。该方法代表了一类新型的纳米线生长方法,可应用于广泛的系统。CONG不需要昂贵的化学气相沉积或物理气相沉积设备,并且可以在标准实验室炉中于中等温度(400 - 600°C)下实现。这项工作还展示了一种催化剂沉积的被动方法,该方法允许该过程在无需光刻或物理气相沉积步骤的情况下简单地实现。通过CONG合成MnO、Fe3O4、WO3、MgO、TiO2、ZnO、ReO3和NiO纳米线,验证了该通用方法。该过程产生的单晶纳米线可以生长到高纵横比并形成高密度纳米线阵列。所生长的Fe3O4和ReO3纳米线在锂离子电池系统中的应用展示出高面积能量密度和功率。