Nicholas Matthew P, Rao Lu, Gennerich Arne
Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
Methods Mol Biol. 2014;1136:171-246. doi: 10.1007/978-1-4939-0329-0_10.
Numerous microtubule-associated molecular motors, including several kinesins and cytoplasmic dynein, produce opposing forces that regulate spindle and chromosome positioning during mitosis. The motility and force generation of these motors are therefore critical to normal cell division, and dysfunction of these processes may contribute to human disease. Optical tweezers provide a powerful method for studying the nanometer motility and piconewton force generation of single motor proteins in vitro. Using kinesin-1 as a prototype, we present a set of step-by-step, optimized protocols for expressing a kinesin construct (K560-GFP) in Escherichia coli, purifying it, and studying its force generation in an optical tweezers microscope. We also provide detailed instructions on proper alignment and calibration of an optical trapping microscope. These methods provide a foundation for a variety of similar experiments.
许多与微管相关的分子马达,包括几种驱动蛋白和胞质动力蛋白,会产生相反的力,在有丝分裂期间调节纺锤体和染色体的定位。因此,这些马达的运动性和力的产生对于正常细胞分裂至关重要,而这些过程的功能障碍可能会导致人类疾病。光镊为在体外研究单个马达蛋白的纳米级运动性和皮牛顿力的产生提供了一种强大的方法。以驱动蛋白-1为原型,我们提出了一套循序渐进的优化方案,用于在大肠杆菌中表达一种驱动蛋白构建体(K560-GFP)、对其进行纯化,并在光镊显微镜中研究其力的产生。我们还提供了关于光阱显微镜正确对准和校准的详细说明。这些方法为各种类似实验奠定了基础。