Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI.
Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI.
J Cell Biol. 2021 Apr 5;220(4). doi: 10.1083/jcb.202004227.
The kinesin-3 motor KIF1A functions in neurons, where its fast and superprocessive motility facilitates long-distance transport, but little is known about its force-generating properties. Using optical tweezers, we demonstrate that KIF1A stalls at an opposing load of ~3 pN but more frequently detaches at lower forces. KIF1A rapidly reattaches to the microtubule to resume motion due to its class-specific K-loop, resulting in a unique clustering of force generation events. To test the importance of neck linker docking in KIF1A force generation, we introduced mutations linked to human neurodevelopmental disorders. Molecular dynamics simulations predict that V8M and Y89D mutations impair neck linker docking. Indeed, both mutations dramatically reduce the force generation of KIF1A but not the motor's ability to rapidly reattach to the microtubule. Although both mutations relieve autoinhibition of the full-length motor, the mutant motors display decreased velocities, run lengths, and landing rates and delayed cargo transport in cells. These results advance our understanding of how mutations in KIF1A can manifest in disease.
驱动蛋白-3 马达 KIF1A 在神经元中发挥作用,其快速和超顺行的运动有助于长距离运输,但关于其产生力的特性知之甚少。我们使用光学镊子证明,KIF1A 在约 3 pN 的反向负载下会停顿,但在较低的力下更频繁地脱离。由于其特定于类别的 K 环,KIF1A 会迅速重新附着到微管上以恢复运动,从而导致力产生事件的独特聚类。为了测试颈环接头对接在 KIF1A 力产生中的重要性,我们引入了与人类神经发育障碍相关的突变。分子动力学模拟预测,V8M 和 Y89D 突变会损害颈环接头对接。事实上,这两种突变都极大地降低了 KIF1A 的力产生,但不会影响该分子马达快速重新附着到微管上的能力。尽管这两种突变都解除了全长分子马达的自动抑制,但突变型分子马达的速度、运行长度和着陆率降低,并且细胞内的货物运输延迟。这些结果增进了我们对 KIF1A 突变如何在疾病中表现的理解。