Department of Biology and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
Cell Rep. 2012 May 31;1(5):408-16. doi: 10.1016/j.celrep.2012.03.006. Epub 2012 Apr 20.
During cell division, the molecular motor Eg5 crosslinks overlapping antiparallel microtubules and pushes them apart to separate mitotic spindle poles. Dynein has been proposed as a direct antagonist of Eg5 at the spindle equator, pulling on antiparallel microtubules and favoring spindle collapse. Some of the experiments supporting this hypothesis relied on endpoint quantifications of spindle phenotypes rather than following individual cell fates over time. Here, we present a mathematical model and proof-of-principle experiments to demonstrate that endpoint quantifications can be fundamentally misleading because they overestimate defective phenotypes. Indeed, live-cell imaging reveals that, while depletion of dynein or the dynein binding protein Lis1 enables spindle formation in presence of an Eg5 inhibitor, the activities of dynein and Eg5 cannot be titrated against each other. Thus, dynein most likely antagonizes Eg5 indirectly by exerting force at different spindle locations rather than through a simple push-pull mechanism at the spindle equator.
在细胞分裂过程中,分子马达 Eg5 将重叠的反向微管交联,并将它们推开,从而将有丝分裂纺锤体两极分开。动力蛋白已被提议为纺锤体赤道处 Eg5 的直接拮抗剂,它拉动反向微管,有利于纺锤体崩溃。支持这一假设的一些实验依赖于对纺锤体表型的终点定量,而不是随着时间的推移跟踪单个细胞的命运。在这里,我们提出了一个数学模型和原理验证实验,以证明终点定量可能会产生根本的误导,因为它们高估了有缺陷的表型。事实上,活细胞成像显示,尽管动力蛋白或动力蛋白结合蛋白 Lis1 的耗竭可以使纺锤体在 Eg5 抑制剂存在的情况下形成,但动力蛋白和 Eg5 的活性不能相互滴定。因此,动力蛋白很可能通过在不同的纺锤体位置施加力而不是通过纺锤体赤道处的简单推拉机制间接拮抗 Eg5。