Suppr超能文献

光刻定义的聚对二甲苯-C:二氧化硅衬底上的细胞图案化

Cell patterning on photolithographically defined parylene-C: SiO2 substrates.

作者信息

Hughes Mark A, Brennan Paul M, Bunting Andrew S, Shipston Mike J, Murray Alan F

机构信息

Centre for Integrative Physiology, School of Biomedical Sciences, The University of Edinburgh;

Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital.

出版信息

J Vis Exp. 2014 Mar 7(85):50929. doi: 10.3791/50929.

Abstract

Cell patterning platforms support broad research goals, such as construction of predefined in vitro neuronal networks and the exploration of certain central aspects of cellular physiology. To easily combine cell patterning with Multi-Electrode Arrays (MEAs) and silicon-based 'lab on a chip' technologies, a microfabrication-compatible protocol is required. We describe a method that utilizes deposition of the polymer parylene-C on SiO2 wafers. Photolithography enables accurate and reliable patterning of parylene-C at micron-level resolution. Subsequent activation by immersion in fetal bovine serum (or another specific activation solution) results in a substrate in which cultured cells adhere to, or are repulsed by, parylene or SiO2 regions respectively. This technique has allowed patterning of a broad range of cell types (including primary murine hippocampal cells, HEK 293 cell line, human neuron-like teratocarcinoma cell line, primary murine cerebellar granule cells, and primary human glioma-derived stem-like cells). Interestingly, however, the platform is not universal; reflecting the importance of cell-specific adhesion molecules. This cell patterning process is cost effective, reliable, and importantly can be incorporated into standard microfabrication (chip manufacturing) protocols, paving the way for integration of microelectronic technology.

摘要

细胞图案化平台支持广泛的研究目标,例如构建预定义的体外神经元网络以及探索细胞生理学的某些核心方面。为了轻松地将细胞图案化与多电极阵列(MEA)和基于硅的“芯片实验室”技术相结合,需要一种与微制造兼容的方案。我们描述了一种利用聚对二甲苯-C聚合物在二氧化硅晶圆上沉积的方法。光刻技术能够以微米级分辨率对聚对二甲苯-C进行精确且可靠的图案化。随后通过浸入胎牛血清(或另一种特定的活化溶液)进行活化,会得到一种底物,在该底物上培养的细胞分别附着于聚对二甲苯区域或被其排斥,或者附着于二氧化硅区域或被其排斥。这项技术已实现对多种细胞类型(包括原代小鼠海马细胞、HEK 293细胞系、人神经元样畸胎癌细胞系、原代小鼠小脑颗粒细胞以及原代人胶质瘤衍生的干细胞样细胞)进行图案化。然而,有趣的是,该平台并非通用;这反映了细胞特异性粘附分子的重要性。这种细胞图案化过程具有成本效益且可靠,重要的是可以纳入标准的微制造(芯片制造)方案中,为微电子技术的整合铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验