Suppr超能文献

无菌小鼠与简化的人类肠道微生物群结合会导致肠道缩短。

Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine.

作者信息

Slezak Kathleen, Krupova Zuzana, Rabot Sylvie, Loh Gunnar, Levenez Florence, Descamps Amandine, Lepage Patricia, Doré Joël, Bellier Sylvain, Blaut Michael

机构信息

Department of Gastrointestinal Microbiology; German Institute of Human Nutrition Potsdam-Rehbruecke; Nuthetal, Germany.

NRA; GABI UMR1313; Jouy-en-Josas, France.

出版信息

Gut Microbes. 2014 Mar-Apr;5(2):176-82. doi: 10.4161/gmic.28203. Epub 2014 Feb 13.

Abstract

Genetic, nutritional, and gut microbiota-derived factors have been proposed to play a role in the development of the whole intestine that is around 40% longer in PRM/Alf mice compared with other mouse strains. The PRM/Alf genotype explains 60% of this length difference. The remaining 40% are due to a maternal effect that could depend on the gut microbiota transmitted by the mother to their pups. Germ-free PRM/Alf mice and C3H/He mice were associated with a simplified human microbiota (SIHUMI) to study its impact on gut length. The small intestines of the SIHUMI-associated mice were 16.4% (PRM/Alf) and 9.7% (C3H/He) shorter than those of the corresponding germ-free counterparts. Temporal temperature gradient gel electrophoresis and quantitative real-time PCR revealed differences in microbiota composition between both SIHUMI-associated mouse strains. Anaerostipes caccae was one log lower in PRM/Alf mice than in C3H/He mice. Since polyamines and short-chain fatty acids (SCFAs) are important intestinal growth factors, their concentrations were explored. Cecal concentrations of putrescine, spermine, spermidine, and N-acetylspermine were 1.5-fold, 3.7-fold, 2.2-fold, and 1.4-fold higher, respectively, in the SIHUMI-C3H/He mice compared with the SIHUMI-PRM/Alf mice. In addition, cecal acetate, propionate, and butyrate concentrations in SIHUMI-C3H/He mice were 1.4-fold, 1.1-fold, and 2.1-fold higher, respectively, than in SIHUMI-PRM/Alf mice. These results indicate that polyamines and SCFAs did not promote gut lengthening in any of the two mouse strains. This suggests that as yet unknown factors provided by the SIHUMI prevented gut lengthening in the SIHUMI-associated mice compared with the germfree mice.

摘要

遗传、营养和源自肠道微生物群的因素被认为在整个肠道的发育中发挥作用,PRM/Alf小鼠的整个肠道长度比其他小鼠品系长约40%。PRM/Alf基因型解释了这种长度差异的60%。其余40%归因于母体效应,这可能取决于母亲传给幼崽的肠道微生物群。无菌PRM/Alf小鼠和C3H/He小鼠与简化的人类微生物群(SIHUMI)相关联,以研究其对肠道长度的影响。与相应的无菌小鼠相比,与SIHUMI相关的小鼠的小肠长度分别缩短了16.4%(PRM/Alf)和9.7%(C3H/He)。时间温度梯度凝胶电泳和定量实时PCR揭示了两种与SIHUMI相关的小鼠品系之间微生物群组成的差异。PRM/Alf小鼠中的粪厌氧棒状菌比C3H/He小鼠低一个数量级。由于多胺和短链脂肪酸(SCFA)是重要的肠道生长因子,因此对它们的浓度进行了研究。与SIHUMI-PRM/Alf小鼠相比,SIHUMI-C3H/He小鼠盲肠中腐胺、精胺、亚精胺和N-乙酰精胺的浓度分别高1.5倍、3.7倍、2.2倍和1.4倍。此外,SIHUMI-C3H/He小鼠盲肠中乙酸盐、丙酸盐和丁酸盐的浓度分别比SIHUMI-PRM/Alf小鼠高1.4倍、1.1倍和2.1倍。这些结果表明,多胺和SCFA在两种小鼠品系中均未促进肠道延长。这表明,与无菌小鼠相比,SIHUMI提供的未知因素阻止了与SIHUMI相关的小鼠的肠道延长。

相似文献

1
Association of germ-free mice with a simplified human intestinal microbiota results in a shortened intestine.
Gut Microbes. 2014 Mar-Apr;5(2):176-82. doi: 10.4161/gmic.28203. Epub 2014 Feb 13.
3
Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice.
PLoS One. 2013 Sep 10;8(9):e74963. doi: 10.1371/journal.pone.0074963. eCollection 2013.
4
Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model.
Gut Microbes. 2011 Jan-Feb;2(1):25-33. doi: 10.4161/gmic.2.1.14651.
5
Clostridium ramosum promotes high-fat diet-induced obesity in gnotobiotic mouse models.
mBio. 2014 Sep 30;5(5):e01530-14. doi: 10.1128/mBio.01530-14.
6
Genetic interaction between a maternal factor and the zygotic genome controls the intestine length in PRM/Alf mice.
Physiol Genomics. 2003 Dec 16;16(1):82-9. doi: 10.1152/physiolgenomics.00106.2003.
9
Infant formula supplemented with polyamines alters the intestinal microbiota in neonatal BALB/cOlaHsd mice.
J Nutr Biochem. 2012 Nov;23(11):1508-13. doi: 10.1016/j.jnutbio.2011.10.003. Epub 2012 Mar 7.

引用本文的文献

1
StrainR2 accurately deconvolutes strain-level abundances in synthetic microbial communities.
Bioinformatics. 2025 Aug 2;41(8). doi: 10.1093/bioinformatics/btaf440.
2
Gut microbiota prevents small intestinal tumor formation due to bile acids in gnotobiotic mice.
Microbiome Res Rep. 2024 Aug 29;3(4):44. doi: 10.20517/mrr.2024.20. eCollection 2024.
4
Roles of the gut microbiome in weight management.
Nat Rev Microbiol. 2023 Aug;21(8):535-550. doi: 10.1038/s41579-023-00888-0. Epub 2023 May 3.
5
Hepatic Mitochondria-Gut Microbiota Interactions in Metabolism-Associated Fatty Liver Disease.
Metabolites. 2023 Feb 21;13(3):322. doi: 10.3390/metabo13030322.
6
Synthetic microbial communities (SynComs) of the human gut: design, assembly, and applications.
FEMS Microbiol Rev. 2023 Mar 10;47(2). doi: 10.1093/femsre/fuad012.
7
Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications.
Front Cell Infect Microbiol. 2022 Nov 8;12:997018. doi: 10.3389/fcimb.2022.997018. eCollection 2022.
9
Tissue-wide metabolomics reveals wide impact of gut microbiota on mice metabolite composition.
Sci Rep. 2022 Sep 2;12(1):15018. doi: 10.1038/s41598-022-19327-w.
10
Intestinal Barrier Dysfunction in Fatty Liver Disease: Roles of Microbiota, Mucosal Immune System, and Bile Acids.
Semin Liver Dis. 2022 May;42(2):122-137. doi: 10.1055/s-0042-1748037. Epub 2022 Jun 23.

本文引用的文献

2
Role of secretory IgA in infection and maintenance of homeostasis.
Autoimmun Rev. 2013 Apr;12(6):661-5. doi: 10.1016/j.autrev.2012.10.012. Epub 2012 Nov 29.
4
Bifidobacterium longum CECT 7347 modulates immune responses in a gliadin-induced enteropathy animal model.
PLoS One. 2012;7(2):e30744. doi: 10.1371/journal.pone.0030744. Epub 2012 Feb 10.
5
Quantification of human fecal bifidobacterium species by use of quantitative real-time PCR analysis targeting the groEL gene.
Appl Environ Microbiol. 2012 Apr;78(8):2613-22. doi: 10.1128/AEM.07749-11. Epub 2012 Feb 3.
6
Human intestinal microbiota: characterization of a simplified and stable gnotobiotic rat model.
Gut Microbes. 2011 Jan-Feb;2(1):25-33. doi: 10.4161/gmic.2.1.14651.
7
Polyamines and the intestinal tract.
Crit Rev Clin Lab Sci. 2007;44(4):365-411. doi: 10.1080/10408360701250016.
8
Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota.
Semin Immunol. 2007 Apr;19(2):59-69. doi: 10.1016/j.smim.2006.10.002. Epub 2006 Nov 21.
9
Biological significance of dietary polyamines.
Nutrition. 2007 Jan;23(1):87-95. doi: 10.1016/j.nut.2006.09.006. Epub 2006 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验