Department of Biological and Environmental Sciences, Georgia College & State University, Campus Box 081, Milledgeville, GA, 31061, USA.
Environ Sci Pollut Res Int. 2014;21(13):7828-37. doi: 10.1007/s11356-014-2743-9. Epub 2014 Mar 19.
Residence time effects on phase transformation of silver nanoparticles (AgNPs) (15-50 nm, with and without polyvinylpyrrolidone (PVP) coating) were investigated in reducing soils using experimental geochemistry and synchrotron-based x-ray techniques. After 30 days of anaerobic incubation, a substantial fraction of PVP-coated AgNPs (15 nm) were transformed into Ag₂S and or humic acid (HA) complexed Ag(I), whereas only the HA fraction was dominant in uncoated AgNPs (50 nm). Several investigations recently reported that sulfidation of AgNPs to Ag₂S was the predominant mechanism controlling the fate of AgNP in soil-water environments. However, this investigation showed each AgNP underwent particle-specific chemical transformations to different end compounds after 30 days. Considering the small contribution of Ag(I) dissolution from all AgNPs (less than 5%), we concluded that changes in solid-state chemical speciation of sorbed AgNPs was promoted by particle-specific interactions of NPs in soil chemical constituents, suggesting a critical role of soil absorbents in predicting the fate of AgNPs in terrestrial environments.
采用实验地球化学和基于同步加速器的 X 射线技术研究了银纳米粒子(AgNPs)(15-50nm,有和没有聚乙烯吡咯烷酮(PVP)涂层)在还原土壤中的停留时间对其物相转变的影响。在厌氧孵育 30 天后,大量的 PVP 包覆的 AgNPs(15nm)转化为 Ag₂S 和/或与腐殖酸(HA)络合的 Ag(I),而未包覆的 AgNPs(50nm)中则主要是 HA 分。最近有几项研究报告称,AgNPs 的硫化作用是控制 AgNP 在土壤-水环境中归宿的主要机制。然而,这项研究表明,在 30 天后,每个 AgNP 都经历了特定于颗粒的化学转化,形成了不同的最终化合物。考虑到所有 AgNPs 从固相中溶解出的 Ag(I)(小于 5%)的贡献很小,我们得出结论,土壤化学组分中纳米颗粒的特定相互作用促进了吸附态 AgNPs 固相中化学形态的变化,这表明土壤吸收剂在预测 AgNP 在陆地环境中的归宿方面起着关键作用。