Suppr超能文献

肠球菌噬菌体与基因组防御

Enterococcal Bacteriophages and Genome Defense

作者信息

Duerkop Breck A., Palmer Kelli L., Horsburgh Malcolm J.

机构信息

Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA

Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75080, USA

Abstract

Bacteriophages (phages) are viruses that infect bacteria. Similar to the viruses of plants and animals, phages are inert and are unable to propagate themselves in the absence of a host. Phages depend on host metabolism to provide the organic material and machinery necessary for their replication and for the subsequent packaging of the viral genetic material during phage particle biosynthesis. Phages are associated with nearly all known bacterial taxa and, as a result, are found in diverse environments that range from soil to oceans and even in deserts (Prestel, Salamitou, & DuBow, 2008; Prigent, Leroy, Confalonieri, Dutertre, & DuBow, 2005; Srinivasiah, Bhavsar, Thapar, Liles, Schoenfeld, & Wommack, 2008; Wommack & Colwell, 2000). Phages are found either directly associated with their bacterial hosts or in large numbers as free virions in the environment. Since there is a vast distribution of phages across the globe, it is possible to theorize that phages constitute the most abundant biological entities on earth. Their numbers have been estimated to reach as high as 10 particles with the potential for 10 phage infections occurring every second (Pedulla, et al., 2003; Wommack & Colwell, 2000). As many more phage genome sequences have become available in recent years, it is obvious that phages are extremely incongruent at the genomic level. This diversity in genetic makeup is proposed to result from the fastidious replication of phage particles during the infection of highly permissive hosts. During these infections, phages are able to exchange DNA within host genomes through recombination, and continually generate diversity as a result (Hendrix, Smith, Burns, Ford, & Hatfull, 1999). The vast majority of phages belong to the order of , which are tailed phages that have dsDNA and an isometric capsid. is comprised of three phylogenetically-related families that are discriminated by tail morphology: (long contractile tails), (long non-contractile tails), and (short tails) (Ackermann, 2007; Krupovic, Prangishvili, Hendrix, & Bamford, 2011). The most well-studied tailed phages are the coliphages ʎ (), T4 (), and T7 () which infect and which have served as workhorses for elucidating the mechanisms of modern molecular genetics and biochemistry (Johnson, Poteete, Lauer, Sauer, Ackers, & Ptashne, 1981; Miller, Kutter, Mosiq, Arisaka, Kunisawa, & Rüger, 2003; Ptashne, et al., 1980; Tabor & Richardson, 1985). Far less abundant are the non-tailed phages, which encompass numerous families with great morphological distinction; these include phages that are filamentous (long filaments to short rods), polyhedral (vesicular and envelope-like), and pleomorphic (including those that are lemon, droplet, and ampule shaped) (Ackermann, 2007). The nucleic acid content of phage genomes is either DNA or RNA and both double and single stranded DNA and RNA phages have been identified. In addition, the size of the phage genome can range from under ten kilobases to several hundred kilobases. Phages have evolved replication strategies that can be lytic, lysogenic (temperate), or chronic. Chronic replication results in the continual, non-lethal shedding of virions by protrusion through the membrane. All phages have common life-cycle stages of adsorption, DNA injection and replication, virion production, and release. Tailed phages mediate host cell lysis through the combined action of a holin, which perforates the membrane, and an endolysin (lysin), which hydrolyses cell wall peptidoglycan. Lytic phages are restricted to a life-cycle that results in the lysis of their host. Temperate phages have two possible life-cycles: lysis, or the recombination of their genome at a chromosomal attachment site using a phage-encoded integrase. Temperate phages are maintained within the host chromosome by transcriptional repressors that determine when the phage undergoes an infectious or lytic switch. The lytic switch occurs when conditions within their host promote excision. Excision usually proceeds during times of hardship when host health is threatened, either by physical stress or by chemical stress, such as antibiotics, ultraviolet (UV) light, or reactive oxygen species (Allen, et al., 2011; DeMarini & Lawrence, 1992; Little & Mount, 1982). Temperate phages provide key insights into the evolution of bacterial pathogenesis, since many temperate phages encode virulence factors used by pathogenic bacteria during both human and animal infections (Bensing, Siboo, & Sullam, 2001; Brüssow, Canchaya, & Hardt, 2004; Novick, Christie, & Penadés, 2010).

摘要

噬菌体是感染细菌的病毒。与动植物病毒类似,噬菌体是惰性的,在没有宿主的情况下无法自我繁殖。噬菌体依赖宿主代谢来提供其复制以及在噬菌体颗粒生物合成过程中后续包装病毒遗传物质所需的有机物质和机制。噬菌体与几乎所有已知的细菌分类群相关,因此存在于从土壤到海洋甚至沙漠等各种环境中(普雷斯特尔、萨拉米图和杜博,2008年;普里让、勒鲁瓦、孔法洛涅里、迪特尔特雷和杜博,2005年;斯里尼瓦西亚、巴夫萨尔、萨帕尔、利尔斯、舍恩菲尔德和沃马克,2008年;沃马克和科尔韦尔,2000年)。噬菌体要么直接与其细菌宿主相关联,要么大量以环境中的游离病毒体形式存在。由于噬菌体在全球分布广泛,因此可以推测噬菌体是地球上最丰富的生物实体。据估计,它们的数量高达10个粒子,每秒可能发生10次噬菌体感染(佩杜拉等人,2003年;沃马克和科尔韦尔,2000年)。近年来,随着越来越多的噬菌体基因组序列可供使用,很明显噬菌体在基因组水平上极其不一致。这种基因组成的多样性被认为是由于噬菌体颗粒在感染高度敏感宿主期间的精细复制所致。在这些感染过程中,噬菌体能够通过重组在宿主基因组内交换DNA,并因此不断产生多样性(亨德里克斯、史密斯、伯恩斯、福特和哈特富尔,1999年)。绝大多数噬菌体属于 目,它们是具有双链DNA和等轴衣壳的有尾噬菌体。 目由三个系统发育相关的科组成,这些科通过尾部形态来区分: (长收缩尾)、 (长非收缩尾)和 (短尾)(阿克曼,2007年;克鲁波维奇、普兰吉什维利、亨德里克斯和班福德,2011年)。研究最深入的有尾噬菌体是感染大肠杆菌的噬菌体λ( )、T4( )和T7( ),它们一直是阐明现代分子遗传学和生物化学机制的得力工具(约翰逊、波泰特、劳尔、索尔、阿克斯和普塔什内,1981年;米勒、库特尔、莫西克、有坂、国泽和吕格,2003年;普塔什内等人,1980年;塔博尔和理查森,1985年)。非有尾噬菌体则要少得多,它们包括许多形态差异很大的科;这些包括丝状(从长丝到短杆)、多面体(囊泡状和包膜状)和多形性(包括柠檬形、液滴形和安瓿形)噬菌体(阿克曼,2007年)。噬菌体基因组的核酸含量要么是DNA要么是RNA,并且已经鉴定出双链和单链的DNA和RNA噬菌体。此外,噬菌体基因组的大小可以从不到10千碱基到几百千碱基不等。噬菌体已经进化出了可以是裂解性、溶原性(温和性)或慢性的复制策略。慢性复制导致病毒体通过膜突出而持续、非致死性地释放。所有噬菌体都有吸附、DNA注入和复制、病毒体产生以及释放等共同的生命周期阶段。有尾噬菌体通过一种穿孔膜的溶菌蛋白和一种水解细胞壁肽聚糖的内溶素(溶菌酶)的共同作用介导宿主细胞裂解。裂解性噬菌体限于导致其宿主裂解的生命周期。温和性噬菌体有两种可能 的生命周期:裂解,或者使用噬菌体编码的整合酶在染色体附着位点处重组其基因组。温和性噬菌体通过转录阻遏物维持在宿主染色体中,这些阻遏物决定噬菌体何时经历感染性或裂解性转换。当宿主内的条件促进切除时,就会发生裂解性转换。切除通常在宿主健康受到威胁的艰难时期进行,无论是受到物理压力还是化学压力,如抗生素、紫外线(UV)或活性氧(艾伦等人,2011年;德马里尼和劳伦斯,1992年;利特尔和芒特,1982年)。温和性噬菌体为细菌致病机制的进化提供了关键见解,因为许多温和性噬菌体编码致病细菌在人类和动物感染期间使用的毒力因子(本辛、西博和苏拉姆,2001年;布鲁索、坎查亚和哈特,2004年;诺维克、克里斯蒂和佩纳德斯,2010年)。

相似文献

2
Tailed bacteriophages: the order caudovirales.有尾噬菌体:长尾噬菌体目
Adv Virus Res. 1998;51:135-201. doi: 10.1016/s0065-3527(08)60785-x.
4
Novel Bacteriophages in Enterococcus spp.肠球菌属中的新型噬菌体
Curr Microbiol. 2010 Jun;60(6):400-6. doi: 10.1007/s00284-009-9555-z. Epub 2009 Dec 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验