Suppr超能文献

用于人类卵母细胞冷冻保存的数学优化冷冻保护剂平衡程序。

Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.

作者信息

Davidson Allyson Fry, Benson James D, Higgins Adam Z

机构信息

School of Chemical, Biological and Environmental Engineering, Oregon State University, 102 Gleeson Hall, Corvallis, Oregon 97331-2702, USA.

出版信息

Theor Biol Med Model. 2014 Mar 20;11:13. doi: 10.1186/1742-4682-11-13.

Abstract

BACKGROUND

Simple and effective cryopreservation of human oocytes would have an enormous impact on the financial and ethical constraints of human assisted reproduction. Recently, studies have demonstrated the potential for cryopreservation in an ice-free glassy state by equilibrating oocytes with high concentrations of cryoprotectants (CPAs) and rapidly cooling to liquid nitrogen temperatures. A major difficulty with this approach is that the high concentrations required for the avoidance of crystal formation (vitrification) also increase the risk of osmotic and toxic damage. We recently described a mathematical optimization approach for designing CPA equilibration procedures that avoid osmotic damage and minimize toxicity, and we presented optimized procedures for human oocytes involving continuous changes in solution composition.

METHODS

Here we adapt and refine our previous algorithm to predict piecewise-constant changes in extracellular solution concentrations in order to make the predicted procedures easier to implement. Importantly, we investigate the effects of using alternate equilibration endpoints on predicted protocol toxicity. Finally, we compare the resulting procedures to previously described experimental methods, as well as mathematically optimized procedures involving continuous changes in solution composition.

RESULTS

For equilibration with CPA, our algorithm predicts an optimal first step consisting of exposure to a solution containing only water and CPA. This is predicted to cause the cells to initially shrink and then swell to the maximum cell volume limit. To reach the target intracellular CPA concentration, the cells are then induced to shrink to the minimum cell volume limit by exposure to a high CPA concentration. For post-thaw equilibration to remove CPA, the optimal procedures involve exposure to CPA-free solutions that are predicted to cause swelling to the maximum volume limit. The toxicity associated with these procedures is predicted to be much less than that of conventional procedures and comparable to that of the corresponding procedures with continuous changes in solution composition.

CONCLUSIONS

The piecewise-constant procedures described in this study are experimentally facile and are predicted to be less toxic than conventional procedures for human oocyte cryopreservation. Moreover, the mathematical optimization approach described here will facilitate the design of cryopreservation procedures for other cell types.

摘要

背景

简单有效的人类卵母细胞冷冻保存方法将对人类辅助生殖的经济和伦理限制产生巨大影响。最近,研究表明,通过使卵母细胞与高浓度冷冻保护剂(CPA)平衡并快速冷却至液氮温度,可实现无冰玻璃态的冷冻保存。这种方法的一个主要困难在于,避免晶体形成(玻璃化)所需的高浓度也增加了渗透和毒性损伤的风险。我们最近描述了一种数学优化方法,用于设计避免渗透损伤并将毒性降至最低的CPA平衡程序,并提出了涉及溶液成分连续变化的人类卵母细胞优化程序。

方法

在此,我们调整并完善先前的算法,以预测细胞外溶液浓度的分段恒定变化,使预测的程序更易于实施。重要的是,我们研究了使用替代平衡终点对预测方案毒性的影响。最后,我们将所得程序与先前描述的实验方法以及涉及溶液成分连续变化的数学优化程序进行比较。

结果

对于与CPA的平衡,我们的算法预测最佳的第一步是将细胞暴露于仅含有水和CPA的溶液中。预计这会使细胞最初收缩,然后膨胀至最大细胞体积极限。为了达到目标细胞内CPA浓度,随后通过将细胞暴露于高CPA浓度使其收缩至最小细胞体积极限。对于解冻后去除CPA的平衡,最佳程序是将细胞暴露于预计会使其膨胀至最大体积极限的无CPA溶液中。预计与这些程序相关的毒性远低于传统程序,且与溶液成分连续变化的相应程序相当。

结论

本研究中描述的分段恒定程序在实验上操作简便,预计对人类卵母细胞冷冻保存的毒性低于传统程序。此外,本文描述的数学优化方法将有助于设计其他细胞类型的冷冻保存程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a19/3994563/9ea6ad79494d/1742-4682-11-13-1.jpg

相似文献

1
Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
Theor Biol Med Model. 2014 Mar 20;11:13. doi: 10.1186/1742-4682-11-13.
2
Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function.
Cryobiology. 2012 Jun;64(3):144-51. doi: 10.1016/j.cryobiol.2012.01.001. Epub 2012 Jan 10.
3
Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
Hum Reprod. 2015 Jan;30(1):37-45. doi: 10.1093/humrep/deu284. Epub 2014 Oct 29.
5
Optimization of cryoprotectant loading into murine and human oocytes.
Cryobiology. 2014 Feb;68(1):18-28. doi: 10.1016/j.cryobiol.2013.11.002. Epub 2013 Nov 15.
6
Loading equine oocytes with cryoprotective agents captured with a finite element method model.
Sci Rep. 2021 Oct 6;11(1):19812. doi: 10.1038/s41598-021-99287-9.
7
Use of membrane transport models to design cryopreservation procedures for oocytes.
Anim Reprod Sci. 2024 Aug;267:107536. doi: 10.1016/j.anireprosci.2024.107536. Epub 2024 Jun 18.
8
Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.
PLoS One. 2015 Nov 25;10(11):e0142828. doi: 10.1371/journal.pone.0142828. eCollection 2015.
9
Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution.
PeerJ. 2023 Nov 21;11:e16323. doi: 10.7717/peerj.16323. eCollection 2023.
10

引用本文的文献

1
Osmotic response during kidney perfusion with cryoprotectant in isotonic or hypotonic vehicle solution.
PeerJ. 2023 Nov 21;11:e16323. doi: 10.7717/peerj.16323. eCollection 2023.
3
Ovarian tissue cryopreservation and transplantation: a review on reactive oxygen species generation and antioxidant therapy.
Cell Tissue Res. 2023 Sep;393(3):401-423. doi: 10.1007/s00441-023-03794-2. Epub 2023 Jun 17.
4
Multiple cryoprotectant toxicity model for vitrification solution optimization.
Cryobiology. 2022 Oct;108:1-9. doi: 10.1016/j.cryobiol.2022.09.002. Epub 2022 Sep 13.
5
hMSCs in contact with DMSO for cryopreservation: Experiments and modeling of osmotic injury and cytotoxic effect.
Biotechnol Bioeng. 2022 Oct;119(10):2890-2907. doi: 10.1002/bit.28174. Epub 2022 Jul 28.
6
7
General tissue mass transfer model for cryopreservation applications.
Biophys J. 2021 Nov 16;120(22):4980-4991. doi: 10.1016/j.bpj.2021.10.014. Epub 2021 Oct 16.
8
Loading equine oocytes with cryoprotective agents captured with a finite element method model.
Sci Rep. 2021 Oct 6;11(1):19812. doi: 10.1038/s41598-021-99287-9.
10
Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method.
Cryobiology. 2021 Feb;98:219-232. doi: 10.1016/j.cryobiol.2020.10.017. Epub 2020 Nov 4.

本文引用的文献

1
Optimization of cryoprotectant loading into murine and human oocytes.
Cryobiology. 2014 Feb;68(1):18-28. doi: 10.1016/j.cryobiol.2013.11.002. Epub 2013 Nov 15.
2
Rapid removal of glycerol from frozen-thawed red blood cells.
Biotechnol Prog. 2013 May-Jun;29(3):609-20. doi: 10.1002/btpr.1710. Epub 2013 Mar 29.
3
Mathematical optimization of procedures for cryoprotectant equilibration using a toxicity cost function.
Cryobiology. 2012 Jun;64(3):144-51. doi: 10.1016/j.cryobiol.2012.01.001. Epub 2012 Jan 10.
4
A general model for the dynamics of cell volume, global stability, and optimal control.
J Math Biol. 2011 Aug;63(2):339-59. doi: 10.1007/s00285-010-0374-4. Epub 2010 Nov 10.
5
The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure.
Cryobiology. 2009 Aug;59(1):75-82. doi: 10.1016/j.cryobiol.2009.04.012. Epub 2009 May 7.
6
Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants.
Mol Reprod Dev. 2009 Apr;76(4):321-33. doi: 10.1002/mrd.20956.
7
Human oocyte vitrification: the permeability of metaphase II oocytes to water and ethylene glycol and the appliance toward vitrification.
Fertil Steril. 2008 Jun;89(6):1812-25. doi: 10.1016/j.fertnstert.2007.06.013. Epub 2007 Aug 6.
9
Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.
Cryobiology. 2007 Aug;55(1):10-8. doi: 10.1016/j.cryobiol.2007.04.002. Epub 2007 Apr 10.
10
Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries.
Reprod Biomed Online. 2007 Jan;14(1):72-9. doi: 10.1016/s1472-6483(10)60766-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验