Suppr超能文献

在与玻璃化相关的浓度下,小鼠胰岛素瘤中冷冻保护剂的递送与去除。

Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.

作者信息

Mukherjee Indra Neil, Song Ying C, Sambanis Athanassios

机构信息

School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.

出版信息

Cryobiology. 2007 Aug;55(1):10-8. doi: 10.1016/j.cryobiol.2007.04.002. Epub 2007 Apr 10.

Abstract

Development of optimal cryopreservation protocols requires delivery and removal of cryoprotective agents (CPAs) in such a way that negative osmotic and cytotoxic effects on cells are minimized. This is especially true for vitrification, where high CPA concentrations are employed. In this study, we report on the determination of cell membrane permeability parameters for water (L(p)) and solute (P(s)), and on the design and experimental verification of CPA addition and removal protocols at vitrification-relevant concentrations for a murine insulinoma cell line, betaTC-tet cells. Using membrane permeability values and osmotic tolerance limits, mathematical modeling and computer simulations were used to design CPA addition and removal protocols at high concentrations. The cytotoxic effects of CPAs were also evaluated. Cells were able to tolerate the addition and removal of 2.5M dimethyl sulfoxide (DMSO) and 2.5M 1,2 propanediol (PD) in single steps, but required multi-step addition and removal with 3.0M DMSO, 3.0M PD, and a vitrification-relevant concentration of 3.0M DMSO+3.0M PD. Cytotoxicity studies revealed that betaTC-tet cells were able to tolerate the presence of single component 6.0M DMSO and 6.0M PD and to a lesser extent 3.0M DMSO+3.0M PD. These results determine the time and concentration domain of CPA exposure that cells can tolerate and are essential for designing cryopreservation protocols for free cells as well as cells in engineered tissues.

摘要

制定最佳冷冻保存方案需要以将对细胞的负渗透和细胞毒性作用降至最低的方式输送和去除冷冻保护剂(CPA)。对于采用高浓度CPA的玻璃化冷冻而言尤其如此。在本研究中,我们报告了对小鼠胰岛素瘤细胞系βTC-tet细胞的水(L(p))和溶质(P(s))的细胞膜通透性参数的测定,以及与玻璃化相关浓度下CPA添加和去除方案的设计与实验验证。利用膜通透性值和渗透耐受极限,通过数学建模和计算机模拟来设计高浓度下的CPA添加和去除方案。还评估了CPA的细胞毒性作用。细胞能够单步耐受添加和去除2.5M二甲基亚砜(DMSO)和2.5M 1,2-丙二醇(PD),但对于3.0M DMSO、3.0M PD以及与玻璃化相关浓度的3.0M DMSO + 3.0M PD则需要多步添加和去除。细胞毒性研究表明,βTC-tet细胞能够耐受单一组分6.0M DMSO和6.0M PD的存在,对3.0M DMSO + 3.0M PD的耐受程度稍低。这些结果确定了细胞能够耐受的CPA暴露的时间和浓度范围,对于设计游离细胞以及工程组织中细胞的冷冻保存方案至关重要。

相似文献

1
Cryoprotectant delivery and removal from murine insulinomas at vitrification-relevant concentrations.
Cryobiology. 2007 Aug;55(1):10-8. doi: 10.1016/j.cryobiol.2007.04.002. Epub 2007 Apr 10.
2
Cytotoxicity effects of cryoprotectants as single-component and cocktail vitrification solutions.
Cryobiology. 2011 Apr;62(2):115-22. doi: 10.1016/j.cryobiol.2011.01.012. Epub 2011 Jan 22.
3
Mathematical modeling of cryoprotectant addition and removal for the cryopreservation of engineered or natural tissues.
Cryobiology. 2012 Feb;64(1):1-11. doi: 10.1016/j.cryobiol.2011.11.006. Epub 2011 Nov 28.
4
Cryoprotectant transport through articular cartilage for long-term storage: experimental and modeling studies.
Osteoarthritis Cartilage. 2008 Nov;16(11):1379-86. doi: 10.1016/j.joca.2008.03.027. Epub 2008 Jun 9.
7
Transport processes in equine oocytes and ovarian tissue during loading with cryoprotective solutions.
Biochim Biophys Acta Gen Subj. 2021 Feb;1865(2):129797. doi: 10.1016/j.bbagen.2020.129797. Epub 2020 Nov 17.
8
A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells.
Cryobiology. 2016 Apr;72(2):93-9. doi: 10.1016/j.cryobiol.2016.03.003. Epub 2016 Mar 11.
9
Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
Hum Reprod. 2015 Jan;30(1):37-45. doi: 10.1093/humrep/deu284. Epub 2014 Oct 29.
10
Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions.
Biochim Biophys Acta Biomembr. 2018 Feb;1860(2):467-474. doi: 10.1016/j.bbamem.2017.10.031. Epub 2017 Oct 31.

引用本文的文献

1
General tissue mass transfer model for cryopreservation applications.
Biophys J. 2021 Nov 16;120(22):4980-4991. doi: 10.1016/j.bpj.2021.10.014. Epub 2021 Oct 16.
2
Rapid quantification of multi-cryoprotectant toxicity using an automated liquid handling method.
Cryobiology. 2021 Feb;98:219-232. doi: 10.1016/j.cryobiol.2020.10.017. Epub 2020 Nov 4.
4
Osmotic behaviour of human mesenchymal stem cells: Implications for cryopreservation.
PLoS One. 2017 Sep 8;12(9):e0184180. doi: 10.1371/journal.pone.0184180. eCollection 2017.
5
Toxicity Minimized Cryoprotectant Addition and Removal Procedures for Adherent Endothelial Cells.
PLoS One. 2015 Nov 25;10(11):e0142828. doi: 10.1371/journal.pone.0142828. eCollection 2015.
6
Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
Theor Biol Med Model. 2014 Mar 20;11:13. doi: 10.1186/1742-4682-11-13.
7
Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol.
Cryobiology. 2014 Feb;68(1):35-42. doi: 10.1016/j.cryobiol.2013.11.004. Epub 2013 Nov 20.
8
Optimization of cryoprotectant loading into murine and human oocytes.
Cryobiology. 2014 Feb;68(1):18-28. doi: 10.1016/j.cryobiol.2013.11.002. Epub 2013 Nov 15.
9
Detection of volume changes in calcein-stained cells using confocal microscopy.
J Fluoresc. 2013 May;23(3):393-8. doi: 10.1007/s10895-013-1202-1. Epub 2013 Mar 7.
10
Cryopreservation effects on intermediary metabolism in a pancreatic substitute: a (13)C nuclear magnetic resonance study.
Tissue Eng Part A. 2012 Nov;18(21-22):2323-31. doi: 10.1089/ten.TEA.2011.0702. Epub 2012 Jul 18.

本文引用的文献

1
A multisolute osmotic virial equation for solutions of interest in biology.
J Phys Chem B. 2007 Feb 22;111(7):1775-85. doi: 10.1021/jp0680342. Epub 2007 Feb 1.
2
Dimethyl sulfoxide toxicity kinetics in intact articular cartilage.
Cell Tissue Bank. 2007;8(2):125-33. doi: 10.1007/s10561-006-9023-y. Epub 2006 Oct 25.
3
Cryopreservation of articular cartilage. Part 1: conventional cryopreservation methods.
Cryobiology. 2006 Jun;52(3):335-46. doi: 10.1016/j.cryobiol.2006.01.005.
4
Water transport and IIF parameters for a connective tissue equivalent.
Cryobiology. 2006 Feb;52(1):62-73. doi: 10.1016/j.cryobiol.2005.09.009. Epub 2005 Dec 15.
6
7
Vitrification of tissue engineered pancreatic substitute.
Transplant Proc. 2005 Jan-Feb;37(1):253-5. doi: 10.1016/j.transproceed.2004.11.027.
9
Trapped water of human erythrocytes and its application in cryopreservation.
Biophys Chem. 2004 Feb 1;107(2):189-95. doi: 10.1016/S0301-4622(03)00211-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验