Suppr超能文献

微流控平台上线性和复杂的细胞保护剂(CPAs)浓度曲线对卵母细胞进行控制性加载。

Controlled loading of cryoprotectants (CPAs) to oocyte with linear and complex CPA profiles on a microfluidic platform.

机构信息

BioMEMS Resource Center, Center for Engineering in Medicine, Massachusetts General Hospital, Shriners Hospital for Children and Harvard Medical School, Boston, MA 02114, USA.

出版信息

Lab Chip. 2011 Oct 21;11(20):3530-7. doi: 10.1039/c1lc20377k. Epub 2011 Sep 1.

Abstract

Oocyte cryopreservation has become an essential tool in the treatment of infertility by preserving oocytes for women undergoing chemotherapy. However, despite recent advances, pregnancy rates from all cryopreserved oocytes remain low. The inevitable use of the cryoprotectants (CPAs) during preservation affects the viability of the preserved oocytes and pregnancy rates either through CPA toxicity or osmotic injury. Current protocols attempt to reduce CPA toxicity by minimizing CPA concentrations, or by minimizing the volume changes via the step-wise addition of CPAs to the cells. Although the step-wise addition decreases osmotic shock to oocytes, it unfortunately increases toxic injuries due to the long exposure times to CPAs. To address limitations of current protocols and to rationally design protocols that minimize the exposure to CPAs, we developed a microfluidic device for the quantitative measurements of oocyte volume during various CPA loading protocols. We spatially secured a single oocyte on the microfluidic device, created precisely controlled continuous CPA profiles (step-wise, linear and complex) for the addition of CPAs to the oocyte and measured the oocyte volumetric response to each profile. With both linear and complex profiles, we were able to load 1.5 M propanediol to oocytes in less than 15 min and with a volumetric change of less than 10%. Thus, we believe this single oocyte analysis technology will eventually help future advances in assisted reproductive technologies and fertility preservation.

摘要

卵母细胞冷冻保存已成为治疗化疗女性不孕的重要手段。然而,尽管最近取得了进展,但所有冷冻保存的卵母细胞的妊娠率仍然很低。在保存过程中不可避免地使用冷冻保护剂(CPAs),这会通过 CPA 毒性或渗透损伤影响保存卵母细胞的活力和妊娠率。目前的方案试图通过最小化 CPA 浓度来降低 CPA 毒性,或者通过逐步向细胞中添加 CPAs 来最小化体积变化。尽管逐步添加会降低卵母细胞的渗透压冲击,但由于长时间暴露于 CPAs 中,不幸的是会增加毒性损伤。为了解决当前方案的局限性,并合理设计最大限度减少 CPA 暴露的方案,我们开发了一种微流控装置,用于在各种 CPA 加载方案中定量测量卵母细胞体积。我们在微流控装置上空间固定单个卵母细胞,为卵母细胞添加 CPA 时创建精确控制的连续 CPA 曲线(逐步、线性和复杂),并测量卵母细胞对每个曲线的体积响应。对于线性和复杂曲线,我们能够在不到 15 分钟的时间内将 1.5 M 丙二醇加载到卵母细胞中,体积变化小于 10%。因此,我们相信这种单个卵母细胞分析技术最终将有助于辅助生殖技术和生育力保存的未来发展。

相似文献

4
Use of membrane transport models to design cryopreservation procedures for oocytes.
Anim Reprod Sci. 2024 Aug;267:107536. doi: 10.1016/j.anireprosci.2024.107536. Epub 2024 Jun 18.
5
Loading equine oocytes with cryoprotective agents captured with a finite element method model.
Sci Rep. 2021 Oct 6;11(1):19812. doi: 10.1038/s41598-021-99287-9.
8
Mathematically optimized cryoprotectant equilibration procedures for cryopreservation of human oocytes.
Theor Biol Med Model. 2014 Mar 20;11:13. doi: 10.1186/1742-4682-11-13.
9
Slow and steady cell shrinkage reduces osmotic stress in bovine and murine oocyte and zygote vitrification.
Hum Reprod. 2015 Jan;30(1):37-45. doi: 10.1093/humrep/deu284. Epub 2014 Oct 29.
10
Improved low-CPA vitrification of mouse oocytes using quartz microcapillary.
Cryobiology. 2015 Jun;70(3):269-72. doi: 10.1016/j.cryobiol.2015.04.003. Epub 2015 Apr 11.

引用本文的文献

1
Autonomous cryoprotectant loading of the oocyte using microfluidic transistors.
Device. 2025 Jun 20;3(6). doi: 10.1016/j.device.2025.100715. Epub 2025 Feb 27.
2
Oocytes Vitrification Using Automated Equipment Based on Microfluidic Chip.
Ann Biomed Eng. 2025 Feb;53(2):471-480. doi: 10.1007/s10439-024-03623-9. Epub 2024 Sep 25.
3
Microfluidic chips in female reproduction: a systematic review of status, advances, and challenges.
Theranostics. 2024 Jul 15;14(11):4352-4374. doi: 10.7150/thno.97301. eCollection 2024.
4
In Vitro Growth of Human Follicles: Current and Future Perspectives.
Int J Mol Sci. 2024 Jan 26;25(3):1510. doi: 10.3390/ijms25031510.
5
Revolutionizing the female reproductive system research using microfluidic chip platform.
J Nanobiotechnology. 2023 Dec 19;21(1):490. doi: 10.1186/s12951-023-02258-7.
6
Opportunities involving microfluidics and 3D culture systems to the embryo production.
Anim Reprod. 2023 Aug 4;20(2):e20230058. doi: 10.1590/1984-3143-AR2023-0058. eCollection 2023.
7
Development of an Open Microfluidic Platform for Oocyte One-Stop Vitrification with Cryotop Method.
Biosensors (Basel). 2022 Sep 19;12(9):766. doi: 10.3390/bios12090766.
8
The Future of IVF: The New Normal in Human Reproduction.
Reprod Sci. 2022 Mar;29(3):849-856. doi: 10.1007/s43032-021-00829-3. Epub 2022 Jan 3.
9
Oocyte Cryopreservation in Domestic Animals and Humans: Principles, Techniques and Updated Outcomes.
Animals (Basel). 2021 Oct 13;11(10):2949. doi: 10.3390/ani11102949.
10
A microfluidic approach for synchronous and nondestructive study of the permeability of multiple oocytes.
Microsyst Nanoeng. 2020 Jul 27;6:55. doi: 10.1038/s41378-020-0160-4. eCollection 2020.

本文引用的文献

1
Cell motion and recovery in a two-stream microfluidic device.
Microfluid Nanofluidics. 2010 Apr;8(4):457-465. Epub 2009 Jul 24.
3
Dynamic microfunnel culture enhances mouse embryo development and pregnancy rates.
Hum Reprod. 2010 Mar;25(3):613-22. doi: 10.1093/humrep/dep449. Epub 2010 Jan 3.
4
Microfluidics for cryopreservation.
Lab Chip. 2009 Jul 7;9(13):1874-81. doi: 10.1039/b823062e. Epub 2009 Mar 31.
5
Permeability of the rhesus monkey oocyte membrane to water and common cryoprotectants.
Mol Reprod Dev. 2009 Apr;76(4):321-33. doi: 10.1002/mrd.20956.
6
Development of a microfluidic device for determination of cell osmotic behavior and membrane transport properties.
Cryobiology. 2007 Dec;55(3):200-9. doi: 10.1016/j.cryobiol.2007.08.001. Epub 2007 Aug 24.
7
Human oocyte cryopreservation.
Hum Reprod Update. 2007 Nov-Dec;13(6):591-605. doi: 10.1093/humupd/dmm028. Epub 2007 Sep 10.
10
Dynamic single-cell analysis for quantitative biology.
Anal Chem. 2006 Dec 1;78(23):7918-25. doi: 10.1021/ac069490p.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验