Suppr超能文献

运动协同作用与平衡点假说。

Motor synergies and the equilibrium-point hypothesis.

作者信息

Latash Mark L

机构信息

Department of Kinesiology, The Pennsylvania State University, University Park, PA.

出版信息

Motor Control. 2010 Jul;14(3):294-322. doi: 10.1123/mcj.14.3.294.

Abstract

The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

摘要

本文提供了一种方法,将运动控制与协调领域最近的三项进展结合起来:(1)基于运动丰富性原则引入了协同概念;(2)描述了非控制流形假设,它为识别和量化协同提供了一个计算框架;(3)描述了单肌肉、单关节和多关节系统的平衡点假设。将这些概念合并为一个连贯的方案需要关注控制变量而非性能变量。最小最终作用原理被表述为参考构型假设中的指导原则。运动动作与控制器设置的两种类型的变量相关联,一种是最终定义平均性能模式的变量,另一种是定义相关协同的变量。本文回顾了所提出方案的预测,如预期协同调整现象、协同不变的快速动作、非典型协同以及协同随练习的变化。还简要回顾了一些模型。

相似文献

1
Motor synergies and the equilibrium-point hypothesis.
Motor Control. 2010 Jul;14(3):294-322. doi: 10.1123/mcj.14.3.294.
2
Motor control theories and their applications.
Medicina (Kaunas). 2010;46(6):382-92.
3
Postural synergies and their development.
Neural Plast. 2005;12(2-3):119-30; discussion 263-72. doi: 10.1155/NP.2005.119.
4
Multi-finger synergies and the muscular apparatus of the hand.
Exp Brain Res. 2018 May;236(5):1383-1393. doi: 10.1007/s00221-018-5231-5. Epub 2018 Mar 12.
5
Stages in learning motor synergies: a view based on the equilibrium-point hypothesis.
Hum Mov Sci. 2010 Oct;29(5):642-54. doi: 10.1016/j.humov.2009.11.002. Epub 2010 Jan 8.
6
Learning effects on muscle modes and multi-mode postural synergies.
Exp Brain Res. 2008 Jan;184(3):323-38. doi: 10.1007/s00221-007-1101-2. Epub 2007 Aug 28.
8
Action and perception at the level of synergies.
Hum Mov Sci. 2007 Aug;26(4):657-97. doi: 10.1016/j.humov.2007.04.002. Epub 2007 Jul 2.
9
The flexible recruitment of muscle synergies depends on the required force-generating capability.
J Neurophysiol. 2014 Jul 15;112(2):316-27. doi: 10.1152/jn.00109.2014. Epub 2014 Apr 30.
10
Bilateral synergies in foot force production tasks.
Exp Brain Res. 2013 May;227(1):121-30. doi: 10.1007/s00221-013-3494-4. Epub 2013 Apr 9.

引用本文的文献

2
Enhanced gastrocnemius-mimicking lower limb powered exoskeleton robot.
J Neuroeng Rehabil. 2025 Aug 4;22(1):175. doi: 10.1186/s12984-025-01703-y.
4
Bilateral ankle dorsiflexion force control impairments in older adults.
PLoS One. 2025 Mar 20;20(3):e0319578. doi: 10.1371/journal.pone.0319578. eCollection 2025.
6
Role and modulation of various spinal pathways for human upper limb control in different gravity conditions.
PLoS Comput Biol. 2025 Jan 6;21(1):e1012069. doi: 10.1371/journal.pcbi.1012069. eCollection 2025 Jan.
8
A neuronal least-action principle for real-time learning in cortical circuits.
Elife. 2024 Dec 20;12:RP89674. doi: 10.7554/eLife.89674.
9
Sequential Effects in Reaching Reveal Efficient Coding in Motor Planning.
bioRxiv. 2024 Dec 10:2024.09.30.615975. doi: 10.1101/2024.09.30.615975.
10
Neural Simulation of Actions for Serpentine Robots.
Biomimetics (Basel). 2024 Jul 7;9(7):416. doi: 10.3390/biomimetics9070416.

本文引用的文献

1
A self-organizing neural model of motor equivalent reaching and tool use by a multijoint arm.
J Cogn Neurosci. 1993 Fall;5(4):408-35. doi: 10.1162/jocn.1993.5.4.408.
2
Internal models in the cerebellum.
Trends Cogn Sci. 1998 Sep 1;2(9):338-47. doi: 10.1016/s1364-6613(98)01221-2.
3
The principle of superposition in human prehension.
Robotica. 2004 Mar 1;22(2):231-234. doi: 10.1017/S0263574703005344.
4
Mechanical analysis and hierarchies of multidigit synergies during accurate object rotation.
Motor Control. 2009 Jul;13(3):251-79. doi: 10.1123/mcj.13.3.251.
5
Does hand dominance affect the use of motor abundance when reaching to uncertain targets?
Hum Mov Sci. 2009 Apr;28(2):169-90. doi: 10.1016/j.humov.2009.01.003. Epub 2009 Feb 23.
6
Hierarchical control of static prehension: I. Biomechanics.
Exp Brain Res. 2009 Mar;193(4):615-31. doi: 10.1007/s00221-008-1662-8. Epub 2008 Dec 6.
7
Hierarchical control of static prehension: II. Multi-digit synergies.
Exp Brain Res. 2009 Mar;194(1):1-15. doi: 10.1007/s00221-008-1663-7. Epub 2008 Dec 2.
8
Multifinger prehension: an overview.
J Mot Behav. 2008 Sep;40(5):446-76. doi: 10.3200/JMBR.40.5.446-476.
9
The effects of strength training on finger strength and hand dexterity in healthy elderly individuals.
J Appl Physiol (1985). 2008 Oct;105(4):1166-78. doi: 10.1152/japplphysiol.00054.2008. Epub 2008 Aug 7.
10
Muscle cocontraction following dynamics learning.
Exp Brain Res. 2008 Sep;190(2):153-63. doi: 10.1007/s00221-008-1457-y. Epub 2008 Jun 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验