The Institute of Chemistry, The Hebrew University of Jerusalem , Jerusalem 91904, Israel.
J Am Chem Soc. 2016 Apr 27;138(16):5172-85. doi: 10.1021/jacs.6b00694. Epub 2016 Apr 14.
Interlocked circular DNA nanostructures, e.g., catenanes or rotaxanes, provide functional materials within the area of DNA nanotechnology. Specifically, the triggered reversible reconfiguration of the catenane or rotaxane structures provides a means to yield new DNA switches and to use them as dynamic scaffolds for controlling chemical functions and positioning functional cargoes. The synthesis of two-ring catenanes and their switchable reconfiguration by pH, metal ions, or fuel/anti-fuel stimuli are presented, and the functions of these systems, as pendulum or rotor devices or as switchable catalysts, are described. Also, the synthesis of three-, five-, and seven-ring catenanes is presented, and their switchable reconfiguration using fuel/anti-fuel strands is addressed. Implementation of the dynamically reconfigured catenane structures for the programmed organization of Au nanoparticle (NP) assemblies, which allows the plasmonic control of the fluorescence properties of Au NP/fluorophore loads associated with the scaffold, and for the operation of logic gates is discussed. Interlocked DNA rotaxanes and their different synthetic approaches are presented, and their switchable reconfiguration by means of fuel/anti-fuel strands or photonic stimuli is described. Specifically, the use of the rotaxane as a scaffold to organize Au NP assemblies, and the control of the fluorescence properties with Au NP/fluorophore hybrids loaded on the rotaxane scaffold, are introduced. The future prospectives and challenges in the field of interlocked DNA nanostructures and the possible applications are discussed.
互锁的环形 DNA 纳米结构,例如,轮烷或索烃,在 DNA 纳米技术领域提供了功能性材料。具体来说,轮烷或索烃结构的触发式可逆重构提供了一种产生新的 DNA 开关的方法,并将其用作控制化学功能和定位功能载物的动态支架。介绍了双环轮烷的合成及其通过 pH、金属离子或燃料/反燃料刺激的可切换重构,并描述了这些系统作为钟摆或转子装置或作为可切换催化剂的功能。还介绍了三环、五环和七环轮烷的合成及其使用燃料/反燃料链的可切换重构。讨论了动态重构的轮烷结构在 Au 纳米粒子 (NP) 组装的程序化组织中的应用,这允许对与支架相关的 Au NP/荧光团负载的荧光性质进行等离子体控制,以及用于逻辑门的操作。介绍了互锁 DNA 轮烷及其不同的合成方法,并描述了它们通过燃料/反燃料链或光子刺激的可切换重构。具体来说,介绍了轮烷作为支架来组织 Au NP 组装,以及用负载在轮烷支架上的 Au NP/荧光团杂化体来控制荧光性质。讨论了互锁 DNA 纳米结构领域的未来前景和挑战以及可能的应用。