文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于癌症治疗应用的核酸修饰纳米颗粒

Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications.

作者信息

Qin Yunlong, Chen Xinghua, Willner Itamar

机构信息

The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.

出版信息

Small. 2025 Jul;21(27):e2500843. doi: 10.1002/smll.202500843. Epub 2025 May 27.


DOI:10.1002/smll.202500843
PMID:40420627
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12243712/
Abstract

Nanomaterials including metal or metal oxide nanoparticles, carbonous nanomaterial (e.g., carbon dots) or metal-organic framework nanoparticles provide porous, catalytically active surfaces and functional interfaces for binding of ions or molecular agents. By the conjugation of nucleic acids to the nanoparticles, hybrid nanostructures revealing emerging multimodal catalytic/photocatalytic activities, high loading capacities, and effective targeted cell permeation efficacies are formed. The review article exemplifies the application of nucleic acid-modified nanoparticles conjugates for therapeutic treatment of cancer cells. Stimuli-responsive reconfiguration of nucleic acid strands and the specific recognition and catalytic function of oligonucleotides associated with porous, catalytic, and photocatalytic nanoparticles yield hybrid composites demonstrating cooperative synergistic properties for medical applications. The targeted chemodynamic, photodynamic, photothermal and chemotherapeutic treatment of cancer cells by the oligonucleotide/nanoparticle conjugates is addressed. In addition, the application of oligonucleotide/nanoparticle conjugates for gene therapy treatment of cancer cells is discussed.

摘要

包括金属或金属氧化物纳米颗粒、碳质纳米材料(如碳点)或金属有机框架纳米颗粒在内的纳米材料为离子或分子试剂的结合提供了多孔的、具有催化活性的表面和功能界面。通过将核酸与纳米颗粒共轭,形成了具有新兴多模态催化/光催化活性、高负载能力和有效靶向细胞渗透效率的杂化纳米结构。这篇综述文章举例说明了核酸修饰的纳米颗粒共轭物在癌细胞治疗中的应用。核酸链的刺激响应性重构以及与多孔、催化和光催化纳米颗粒相关的寡核苷酸的特异性识别和催化功能产生了杂化复合材料,这些复合材料在医学应用中表现出协同增效特性。文中讨论了寡核苷酸/纳米颗粒共轭物对癌细胞的靶向化学动力学、光动力学、光热和化疗治疗。此外,还讨论了寡核苷酸/纳米颗粒共轭物在癌细胞基因治疗中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/a666b54e9ff1/SMLL-21-2500843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/291af37338e3/SMLL-21-2500843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/b989f3b2e292/SMLL-21-2500843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/4d4c3eb74073/SMLL-21-2500843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/e312019d17fc/SMLL-21-2500843-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/6bf2ad17f70b/SMLL-21-2500843-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/f9e5e998e1fd/SMLL-21-2500843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/40de06fc5eb8/SMLL-21-2500843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/2dc1cea7c211/SMLL-21-2500843-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/e3077d091f2d/SMLL-21-2500843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/ade7a48666b7/SMLL-21-2500843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/a666b54e9ff1/SMLL-21-2500843-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/291af37338e3/SMLL-21-2500843-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/b989f3b2e292/SMLL-21-2500843-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/4d4c3eb74073/SMLL-21-2500843-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/e312019d17fc/SMLL-21-2500843-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/6bf2ad17f70b/SMLL-21-2500843-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/f9e5e998e1fd/SMLL-21-2500843-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/40de06fc5eb8/SMLL-21-2500843-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/2dc1cea7c211/SMLL-21-2500843-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/e3077d091f2d/SMLL-21-2500843-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/ade7a48666b7/SMLL-21-2500843-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1940/12243712/a666b54e9ff1/SMLL-21-2500843-g007.jpg

相似文献

[1]
Nucleic Acid-Modified Nanoparticles for Cancer Therapeutic Applications.

Small. 2025-7

[2]
Nucleic Acid Nanocapsules as a New Platform to Deliver Therapeutic Nucleic Acids for Gene Regulation.

Acc Chem Res. 2025-7-1

[3]
Surface-Modified Carbon Dots for Cancer Therapy: Integrating Diagnostic and Therapeutic Applications.

Int J Nanomedicine. 2025-6-16

[4]
Nucleic acid conjugated gold nanoparticles for biosensing applications: a review.

World J Microbiol Biotechnol. 2025-6-25

[5]
Advancing the potential of nanoparticles for cancer detection and precision therapeutics.

Med Oncol. 2025-6-4

[6]
Iron Oxide-Doped Carbon Nanoparticles Stabilised with Functionally Modified Hyperbranched Polyglycerol for Cd Sensing and Photodynamic Antibacterial Therapeutic Applications.

J Fluoresc. 2024-6-21

[7]
One-pot synthesis of conjugated small molecules for construction of NIR fluorescence/photoacoustic dual-modal imaging nanoagents with improved photothermal/photodynamic/chemodynamic effects.

J Photochem Photobiol B. 2025-8

[8]
Engineered Nanoparticles with Antimicrobial Property.

Curr Drug Metab. 2017

[9]
ATP-responsive nanoparticles for improved chemodynamic therapy and dual starvation therapy.

Nanoscale. 2025-7-3

[10]
An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers.

Sci Total Environ. 2009-11-27

本文引用的文献

[1]
Tetrahedral DNA Framework-Based Spherical Nucleic Acids for Efficient siRNA Delivery.

Angew Chem Int Ed Engl. 2025-1-27

[2]
Spatially Localized Entropy-Driven Evolution of Nucleic Acid-Based Constitutional Dynamic Networks for Intracellular Imaging and Spatiotemporal Programmable Gene Therapy.

J Am Chem Soc. 2024-7-31

[3]
Spherical nucleic acids: emerging amplifiers for therapeutic nanoplatforms.

Nanoscale. 2024-2-29

[4]
Nanomaterials for light-mediated therapeutics in deep tissue.

Chem Soc Rev. 2024-3-18

[5]
Dual chemodynamic/photothermal therapeutic nanoplatform based on DNA-functionalized prussian blue.

Bioorg Chem. 2024-2

[6]
Transient Dynamic Operation of G-Quadruplex-Gated Glucose Oxidase-Loaded ZIF-90 Metal-Organic Framework Nanoparticle Bioreactors.

Nano Lett. 2023-9-27

[7]
Nucleic acid-functionalized nanozymes and their applications.

Nanoscale. 2023-9-14

[8]
Inspired Nature: Three Decades of Spherical Nucleic Acids and Colloidal Crystal Engineering with DNA.

ACS Nano. 2023-9-12

[9]
Modified nucleic acid aptamers: development, characterization, and biological applications.

Trends Biotechnol. 2023-11

[10]
Aptamer-Modified Homogeneous Catalysts, Heterogenous Nanoparticle Catalysts, and Photocatalysts: Functional "Nucleoapzymes", "Aptananozymes", and "Photoaptazymes".

Adv Mater. 2024-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索