Suppr超能文献

氧化还原缓冲剂谷胱甘肽(GSH)和烟酰胺腺嘌呤二核苷酸(磷酸)(NAD(P)H)在与年龄相关的神经退行性变及阿尔茨海默病样小鼠神经元中的相对重要性。

Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons.

作者信息

Ghosh Debolina, Levault Kelsey R, Brewer Gregory J

机构信息

Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, 62794-9626, USA.

出版信息

Aging Cell. 2014 Aug;13(4):631-40. doi: 10.1111/acel.12216. Epub 2014 Mar 21.

Abstract

Aging, a major risk factor in Alzheimer's disease (AD), is associated with an oxidative redox shift, decreased redox buffer protection, and increased free radical reactive oxygen species (ROS) generation, probably linked to mitochondrial dysfunction. While NADH is the ultimate electron donor for many redox reactions, including oxidative phosphorylation, glutathione (GSH) is the major ROS detoxifying redox buffer in the cell. Here, we explored the relative importance of NADH and GSH to neurodegeneration in aging and AD neurons from nontransgenic and 3xTg-AD mice by inhibiting their synthesis to determine whether NADH can compensate for the GSH loss to maintain redox balance. Neurons stressed by either depleting NAD(P)H or GSH indicated that NADH redox control is upstream of GSH levels. Further, although depletion of NAD(P)H or GSH correlated linearly with neuron death, compared with GSH depletion, higher neurodegeneration was observed when NAD(P)H was extrapolated to zero, especially in old age, and in the 3xTg-AD neurons. We also observed an age-dependent loss of gene expression of key redox-dependent biosynthetic enzymes, NAMPT (nicotinamide phosphoribosyltransferase), and NNT (nicotinamide nucleotide transhydrogenase). Moreover, age-related correlations between brain NNT or NAMPT gene expression and NADPH levels suggest that these genes contribute to the age-related declines in NAD(P)H. Our data indicate that in aging and more so in AD-like neurons, NAD(P)H redox control is upstream of GSH and an oxidative redox shift that promotes neurodegeneration. Thus, NAD(P)H generation may be a more efficacious therapeutic target upstream of GSH and ROS.

摘要

衰老作为阿尔茨海默病(AD)的一个主要风险因素,与氧化还原状态的改变、氧化还原缓冲保护作用的降低以及自由基活性氧(ROS)生成的增加有关,这可能与线粒体功能障碍有关。虽然NADH是包括氧化磷酸化在内的许多氧化还原反应的最终电子供体,但谷胱甘肽(GSH)是细胞内主要的ROS解毒氧化还原缓冲剂。在这里,我们通过抑制NADH和GSH的合成,探讨了它们在衰老和来自非转基因及3xTg-AD小鼠的AD神经元神经退行性变中的相对重要性,以确定NADH是否能补偿GSH的损失以维持氧化还原平衡。通过耗尽NAD(P)H或GSH使神经元受到应激,结果表明NADH氧化还原控制在GSH水平的上游。此外,尽管NAD(P)H或GSH的耗尽与神经元死亡呈线性相关,但与GSH耗尽相比,当将NAD(P)H外推至零时观察到更高的神经退行性变,尤其是在老年以及3xTg-AD神经元中。我们还观察到关键的氧化还原依赖性生物合成酶烟酰胺磷酸核糖基转移酶(NAMPT)和烟酰胺核苷酸转氢酶(NNT)的基因表达存在年龄依赖性丧失。此外,脑NNT或NAMPT基因表达与NADPH水平之间的年龄相关性表明,这些基因导致了NAD(P)H随年龄增长而下降。我们的数据表明,在衰老过程中,尤其是在AD样神经元中,NAD(P)H氧化还原控制在GSH上游,并且是促进神经退行性变的氧化还原状态改变的上游因素。因此,NAD(P)H的生成可能是GSH和ROS上游更有效的治疗靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验