Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.
Laboratory of Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America.
Sci Rep. 2019 Aug 2;9(1):11274. doi: 10.1038/s41598-019-47582-x.
Redox systems including extracellular cysteine/cystine (Cys/CySS), intracellular glutathione/oxidized glutathione (GSH/GSSG) and nicotinamide adenine dinucleotide reduced/oxidized forms (NADH/NAD) are critical for maintaining redox homeostasis. Aging as a major risk factor for Alzheimer's disease (AD) is associated with oxidative shifts, decreases in anti-oxidant protection and dysfunction of mitochondria. Here, we examined the flexibility of mitochondrial-specific free NADH in live neurons from non-transgenic (NTg) or triple transgenic AD-like mice (3xTg-AD) of different ages under an imposed extracellular Cys/CySS oxidative or reductive condition. We used phasor fluorescence lifetime imaging microscopy (FLIM) to distinguish free and bound NADH in mitochondria, nuclei and cytoplasm. Under an external oxidative stress, a lower capacity for maintaining mitochondrial free NADH levels was found in old compared to young neurons and a further decline with genetic load. Remarkably, an imposed Cys/CySS reductive state rejuvenated the mitochondrial free NADH levels of old NTg neurons by 71% and old 3xTg-AD neurons by 89% to levels corresponding to the young neurons. Using FLIM as a non-invasive approach, we were able to measure the reversibility of aging subcellular free NADH levels in live neurons. Our results suggest a potential reductive treatment to reverse the loss of free NADH in old and Alzheimer's neurons.
氧化还原系统包括细胞外半胱氨酸/胱氨酸 (Cys/CySS)、细胞内谷胱甘肽/氧化型谷胱甘肽 (GSH/GSSG) 和烟酰胺腺嘌呤二核苷酸还原/氧化形式 (NADH/NAD+),对于维持氧化还原稳态至关重要。衰老作为阿尔茨海默病 (AD) 的主要危险因素与氧化转移、抗氧化保护减少和线粒体功能障碍有关。在这里,我们检查了不同年龄的非转基因 (NTg) 或三重转基因 AD 样小鼠 (3xTg-AD) 活神经元中线粒体特异性游离 NADH 的灵活性,这些神经元在受到细胞外 Cys/CySS 氧化或还原条件的影响下。我们使用相荧光寿命成像显微镜 (FLIM) 来区分线粒体、核和细胞质中游离和结合的 NADH。在外部氧化应激下,与年轻神经元相比,老年神经元维持线粒体游离 NADH 水平的能力较低,遗传负荷进一步下降。值得注意的是,强制 Cys/CySS 还原状态使老年 NTg 神经元的线粒体游离 NADH 水平恢复了 71%,老年 3xTg-AD 神经元恢复了 89%,达到了与年轻神经元相对应的水平。使用 FLIM 作为一种非侵入性方法,我们能够测量活神经元中亚细胞游离 NADH 水平的衰老可逆性。我们的结果表明,还原治疗可能是逆转老年和阿尔茨海默病神经元中游离 NADH 损失的一种潜在方法。