School of Aeronautics and Astronautics, Purdue University, IN 47907, USA.
School of Aeronautics and Astronautics, Purdue University, IN 47907, USA.
Mater Sci Eng C Mater Biol Appl. 2014 May 1;38:28-38. doi: 10.1016/j.msec.2014.01.039. Epub 2014 Jan 28.
The ability of a biomaterial to transport energy by conduction is best characterized in the steady state by its thermal conductivity and in the non-steady state by its thermal diffusivity. The complex hierarchical structure of most biomaterials makes the direct determination of the thermal diffusivity and thermal conductivity difficult using experimental methods. This study presents a classical molecular simulation based approach for the thermal diffusivity and thermal conductivity prediction for a set of tropocollagen and hydroxyapatite based idealized biomaterial interfaces. The thermal diffusivity and thermal conductivity values are calculated using the presented approach at three different temperatures (300 K, 500 K and 700 K). The effects of temperature, structural arrangements, and size of simulated systems on the thermal properties are analyzed. Analyses point out important role played by the interface orientation, interface area, and structural hierarchy. Ensuing discussions establish that the interface structural arrangement and interface orientation combined with biomimetic structural hierarchy can lead to non-intuitive thermal property variations as a function of structural features.
生物材料通过传导传输能量的能力在稳态下最好用其热导率来描述,在非稳态下最好用其热扩散率来描述。大多数生物材料的复杂层次结构使得使用实验方法直接确定热扩散率和热导率变得困难。本研究提出了一种基于经典分子模拟的方法,用于预测一组原胶原蛋白和羟基磷灰石基理想生物材料界面的热扩散率和热导率。使用所提出的方法在三个不同温度(300 K、500 K 和 700 K)下计算热扩散率和热导率值。分析了温度、结构排列和模拟系统大小对热性能的影响。分析指出了界面取向、界面面积和结构层次对热性能的重要影响。随后的讨论表明,界面结构排列和界面取向与仿生结构层次相结合,可以导致结构特征的热性能发生非直观的变化。