Suppr超能文献

孤独症、注意力缺陷多动障碍和强迫症患者脑形态聚类结构的可重复性特征分析。

Characterizing replicability in the clustering structure of brain morphology in autism, attention-deficit/hyperactivity disorder, and obsessive compulsive disorder.

作者信息

Sadat-Nejad Younes, Vandewouw Marlee M, Brian Jessica, Crosbie Jennifer, Schachar Russell J, Iaboni Alana, Kelley Elizabeth, Jones Jessica, Taylor Margot J, Ayub Muhammad, Nicolson Robert, Syed Bilal, Hammill Christopher, Georgiades Stelios, Arnold Paul D, Lerch Jason P, Anagnostou Evdokia, Kushki Azadeh

机构信息

Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, Toronto, ON, M4G1R8, Canada.

University of Toronto, Toronto, Ontario, Canada.

出版信息

Transl Psychiatry. 2025 Aug 30;15(1):333. doi: 10.1038/s41398-025-03540-y.

Abstract

In neurodevelopmental research, within-diagnosis heterogeneity and across-diagnosis overlap necessitate a shift from case-control designs to data-driven clustering approaches. However, our understanding of the replicability of these clustering structures across independent datasets remains limited. Our objective was to examine the replicability of clustering structure in measures of brain morphology in neurodiverse children across two independent datasets, namely the Province of Ontario Neurodevelopmental Disorder (POND) Network and the Healthy Brain Network (HBN). POND and HBN data were collected across various institutions in Ontario, Canada, and New York, United States, respectively. Participants were 5-19 years old and had diagnoses of autism, attention deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), or were neurotypical. We used measures of cortical volume, surface area, cortical thickness, and subgroup volume from structural MRI data. Principal component analysis (PCA) and clustering were used to examine the replicability of clustering structures across the datasets. Correlations among principle components, measures of clusterability, and alignment between the four brain measures as well as male/female subsets were examined. Brain-behaviour associations were examined using univariate and multivariate approaches. The POND dataset included 747 participants with (autism n = 312, ADHD n = 220, OCD n = 70, neurotypical n = 145). The HBN dataset included 582 participants (autism n = 60, ADHD n = 445, OCD n = 19, neurotypical n = 58). Our results showed significant between-dataset correlations in 82.1% of the principal components derived from brain measures. A two-cluster structure was replicated across datasets, brain measures, and the female/male subsets, however the participant composition of clusters were only aligned between cortical volume and surface area, and cortical thickness and subcortical volume. Regional effect sizes for between-cluster differences were highly correlated across datasets (beta = 0.92+/-0.01, p < 0.0001; adjusted R-squared=0.93). Data-driven clusters did not align with diagnostic labels across datasets. Brain-behaviour associations were only replicated for male subsets and subcortical volume using multivariate analysis. We found evidence of replicability of the clustering structure across two independent datasets; however, caution must be exercised in integrating multiple measures in clustering and interpretation of brain-behaviour associations.

摘要

在神经发育研究中,诊断内的异质性和跨诊断的重叠使得研究方法需要从病例对照设计转向数据驱动的聚类方法。然而,我们对这些聚类结构在独立数据集中的可重复性的理解仍然有限。我们的目标是在两个独立数据集,即安大略省神经发育障碍(POND)网络和健康大脑网络(HBN)中,研究神经发育多样的儿童大脑形态测量中聚类结构的可重复性。POND和HBN数据分别在加拿大安大略省和美国纽约的多个机构收集。参与者年龄在5至19岁之间,患有自闭症、注意力缺陷多动障碍(ADHD)、强迫症(OCD),或为神经典型个体。我们使用了来自结构MRI数据的皮质体积、表面积、皮质厚度和亚组体积测量值。主成分分析(PCA)和聚类用于检验数据集间聚类结构的可重复性。研究了主成分之间的相关性、聚类性测量以及四种脑测量值之间的一致性,以及男性/女性子集之间的一致性。使用单变量和多变量方法研究脑-行为关联。POND数据集包括747名参与者(自闭症n = 312,ADHD n = 220,OCD n = 70,神经典型n = 145)。HBN数据集包括582名参与者(自闭症n = 60,ADHD n = 445,OCD n = 19,神经典型n = 58)。我们的结果表明,在源自脑测量值的主成分中,82.1%存在显著的数据集间相关性。一个双聚类结构在数据集、脑测量值以及女性/男性子集中得到了重复,但聚类的参与者组成仅在皮质体积和表面积之间,以及皮质厚度和皮质下体积之间保持一致。跨数据集的聚类间差异的区域效应大小高度相关(β = 0.92±0.01,p < 0.0001;调整后的R平方 = 0.93)。数据驱动的聚类在不同数据集间与诊断标签不一致。仅在男性子集和皮质下体积的多变量分析中重复了脑-行为关联。我们发现了两个独立数据集间聚类结构可重复性的证据;然而,在聚类中整合多种测量值以及解释脑-行为关联时必须谨慎。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验