Suppr超能文献

应用频闪全息术和有限元建模研究人鼓膜的粘弹性特性。

Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling.

机构信息

Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.

Laboratory of Biomedical Physics, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium; Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA; Department of Otology and Laryngology, Harvard Medical School, 243 Charles Street, Boston, MA 02114, USA.

出版信息

Hear Res. 2014 Jun;312:69-80. doi: 10.1016/j.heares.2014.03.002. Epub 2014 Mar 20.

Abstract

A new anatomically-accurate Finite Element (FE) model of the tympanic membrane (TM) and malleus was combined with measurements of the sound-induced motion of the TM surface and the bony manubrium, in an isolated TM-malleus preparation. Using the results, we were able to address two issues related to how sound is coupled to the ossicular chain: (i) Estimate the viscous damping within the tympanic membrane itself, the presence of which may help smooth the broadband response of a potentially highly resonant TM, and (ii) Investigate the function of a peculiar feature of human middle-ear anatomy, the thin mucosal epithelial fold that couples the mid part of the human manubrium to the TM. Sound induced motions of the surface of ex vivo human eardrums and mallei were measured with stroboscopic holography, which yields maps of the amplitude and phase of the displacement of the entire membrane surface at selected frequencies. The results of these measurements were similar, but not identical to measurements made in intact ears. The holography measurements were complemented by laser-Doppler vibrometer measurements of sound-induced umbo velocity, which were made with fine-frequency resolution. Comparisons of these measurements to predictions from a new anatomically accurate FE model with varied membrane characteristics suggest the TM contains viscous elements, which provide relatively low damping, and that the epithelial fold that connects the central section of the human manubrium to the TM only loosely couples the TM to the manubrium. The laser-Doppler measurements in two preparations also suggested the presence of significant variation in the complex modulus of the TM between specimens. Some animations illustrating the model results are available at our website (www.uantwerp.be/en/rg/bimef/downloads/tympanic-membrane-motion).

摘要

一个新的解剖精确的中耳鼓膜(TM)和听小骨的有限元(FE)模型与 TM 表面和骨性砧骨在孤立的 TM-砧骨制备中的声致运动的测量结果相结合。利用这些结果,我们能够解决与声音如何耦合到听小骨链相关的两个问题:(i)估计 TM 本身的粘性阻尼,其存在可能有助于平滑潜在高共振 TM 的宽带响应,以及(ii)研究人类中耳解剖结构中一个特殊特征的功能,即连接人类砧骨中间部分和 TM 的薄粘膜上皮褶皱。使用频闪全息术测量离体人鼓膜和砧骨的表面声致运动,该技术可在选定频率下获得整个膜表面位移的幅度和相位图。这些测量的结果与完整耳朵中的测量结果相似,但不完全相同。全息术测量结果补充了激光多普勒测振仪对鼓凸速度的声致激励的测量结果,该测量结果具有精细的频率分辨率。将这些测量结果与具有不同膜特性的新解剖精确 FE 模型的预测进行比较表明,TM 包含粘性元件,其提供相对低的阻尼,并且连接人类砧骨中心部分和 TM 的上皮褶皱仅将 TM 松散地耦合到砧骨。两个标本中的激光多普勒测量结果还表明,TM 的复杂模量在标本之间存在显著变化。我们的网站(www.uantwerp.be/en/rg/bimef/downloads/tympanic-membrane-motion)上提供了一些说明模型结果的动画。

相似文献

1
Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling.
Hear Res. 2014 Jun;312:69-80. doi: 10.1016/j.heares.2014.03.002. Epub 2014 Mar 20.
2
Motion of the surface of the human tympanic membrane measured with stroboscopic holography.
Hear Res. 2010 May;263(1-2):66-77. doi: 10.1016/j.heares.2009.12.024. Epub 2009 Dec 23.
3
Motion of the tympanic membrane after cartilage tympanoplasty determined by stroboscopic holography.
Hear Res. 2010 May;263(1-2):78-84. doi: 10.1016/j.heares.2009.11.005. Epub 2009 Nov 10.
5
Design, fabrication, and in vitro testing of novel three-dimensionally printed tympanic membrane grafts.
Hear Res. 2016 Oct;340:191-203. doi: 10.1016/j.heares.2016.03.005. Epub 2016 Mar 16.
6
Response of the human tympanic membrane to transient acoustic and mechanical stimuli: Preliminary results.
Hear Res. 2016 Oct;340:15-24. doi: 10.1016/j.heares.2016.01.019. Epub 2016 Feb 12.
7
A single-ossicle ear: Acoustic response and mechanical properties measured in duck.
Hear Res. 2016 Oct;340:35-42. doi: 10.1016/j.heares.2015.12.020. Epub 2015 Dec 23.
8
New data on the motion of the normal and reconstructed tympanic membrane.
Otol Neurotol. 2011 Dec;32(9):1559-67. doi: 10.1097/MAO.0b013e31822e94f3.
9
The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
J Assoc Res Otolaryngol. 2015 Aug;16(4):413-32. doi: 10.1007/s10162-015-0516-x. Epub 2015 Apr 25.
10
A sum of simple and complex motions on the eardrum and manubrium in gerbil.
Hear Res. 2010 May;263(1-2):9-15. doi: 10.1016/j.heares.2009.10.014. Epub 2009 Oct 28.

引用本文的文献

1
The Transmission of Sound to the Cochlea in Normal and Pathological Human Middle Ears.
J Assoc Res Otolaryngol. 2025 Jun 5. doi: 10.1007/s10162-025-00997-y.
2
Experimental Study of Needle Insertion into Gerbil Tympanic Membrane.
J Assoc Res Otolaryngol. 2024 Oct;25(5):427-450. doi: 10.1007/s10162-024-00953-2. Epub 2024 Jul 11.
3
Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane.
J Assoc Res Otolaryngol. 2024 Jun;25(3):285-302. doi: 10.1007/s10162-024-00942-5. Epub 2024 Apr 1.
4
Finite element modelling of sound transmission in the Weberian apparatus of zebrafish ().
J R Soc Interface. 2024 Jan;21(210):20230553. doi: 10.1098/rsif.2023.0553. Epub 2024 Jan 10.
5
Finite-Element Modelling Based on Optical Coherence Tomography and Corresponding X-ray MicroCT Data for Three Human Middle Ears.
J Assoc Res Otolaryngol. 2023 Jun;24(3):339-363. doi: 10.1007/s10162-023-00899-x. Epub 2023 May 10.
8
High Resolution and Labeling Free Studying the 3D Microstructure of the Pars Tensa-Annulus Unit of Mice.
Front Cell Dev Biol. 2021 Oct 8;9:720383. doi: 10.3389/fcell.2021.720383. eCollection 2021.
9
Analyses of the Tympanic Membrane Impulse Response Measured with High-Speed Holography.
Hear Res. 2021 Oct;410:108335. doi: 10.1016/j.heares.2021.108335. Epub 2021 Aug 11.
10
Biomimetic Tympanic Membrane Replacement Made by Melt Electrowriting.
Adv Healthc Mater. 2021 May;10(10):e2002089. doi: 10.1002/adhm.202002089. Epub 2021 Jan 27.

本文引用的文献

1
Full-field thickness distribution of human tympanic membrane obtained with optical coherence tomography.
J Assoc Res Otolaryngol. 2013 Aug;14(4):483-94. doi: 10.1007/s10162-013-0394-z. Epub 2013 May 15.
3
Dynamic properties of human tympanic membrane based on frequency-temperature superposition.
Ann Biomed Eng. 2013 Jan;41(1):205-14. doi: 10.1007/s10439-012-0624-2. Epub 2012 Jul 21.
4
Mechanical properties of human tympanic membrane in the quasi-static regime from in situ point indentation measurements.
Hear Res. 2012 Aug;290(1-2):45-54. doi: 10.1016/j.heares.2012.05.001. Epub 2012 May 11.
5
Open access high-resolution 3D morphology models of cat, gerbil, rabbit, rat and human ossicular chains.
Hear Res. 2012 Feb;284(1-2):1-5. doi: 10.1016/j.heares.2011.12.004. Epub 2011 Dec 13.
6
New data on the motion of the normal and reconstructed tympanic membrane.
Otol Neurotol. 2011 Dec;32(9):1559-67. doi: 10.1097/MAO.0b013e31822e94f3.
7
Biomechanics of the tympanic membrane.
J Biomech. 2011 Apr 29;44(7):1219-36. doi: 10.1016/j.jbiomech.2010.12.023. Epub 2011 Mar 3.
8
Motion of the surface of the human tympanic membrane measured with stroboscopic holography.
Hear Res. 2010 May;263(1-2):66-77. doi: 10.1016/j.heares.2009.12.024. Epub 2009 Dec 23.
9
A sum of simple and complex motions on the eardrum and manubrium in gerbil.
Hear Res. 2010 May;263(1-2):9-15. doi: 10.1016/j.heares.2009.10.014. Epub 2009 Oct 28.
10
Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique.
Hear Res. 2010 May;263(1-2):33-7. doi: 10.1016/j.heares.2009.10.001. Epub 2009 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验