Carl Gustav Carus Faculty of Medicine, Center for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany.
Carl Gustav Carus Faculty of Medicine, Department of Otorhinolaryngology, Head and Neck Surgery, Ear Research Center Dresden, Technische Universität Dresden, Fetscherstr. 74, Dresden, 01307, Germany.
Adv Healthc Mater. 2021 May;10(10):e2002089. doi: 10.1002/adhm.202002089. Epub 2021 Jan 27.
The tympanic membrane (TM) transfers sound waves from the air into mechanical motion for the ossicular chain. This requires a high sensitivity to small dynamic pressure changes and resistance to large quasi-static pressure differences. The TM achieves this by providing a layered structure of about 100µm in thickness, a low flexural stiffness, and a high tensile strength. Chronically infected middle ears require reconstruction of a large area of the TM. However, current clinical treatment can cause a reduction in hearing. With the novel additive manufacturing technique of melt electrowriting (MEW), it is for the first time possible to fabricate highly organized and biodegradable membranes within the dimensions of the TM. Scaffold designs of various fiber composition are analyzed mechanically and acoustically. It can be demonstrated that by customizing fiber orientation, fiber diameter, and number of layers the desired properties of the TM can be met. An applied thin collagen layer seals the micropores of the MEW-printed membrane while keeping the favorable mechanical and acoustical characteristics. The determined properties are beneficial for implantation, closely match those of the human TM, and support the growth of a neo-epithelial layer. This proves the possibilities to create a biomimimetic TM replacement using MEW.
鼓膜(TM)将声波从空气中转化为机械运动,作用于听小骨链。这需要对小的动态压力变化具有高度敏感性,同时对大的准静态压力差具有抵抗力。TM 通过提供约 100µm 厚的分层结构、低弯曲刚度和高拉伸强度来实现这一点。慢性感染的中耳需要重建 TM 的大面积。然而,目前的临床治疗可能会导致听力下降。通过新型的增材制造技术熔融电纺(MEW),首次有可能在 TM 的尺寸内制造高度组织化和可生物降解的膜。对各种纤维组成的支架设计进行了机械和声学分析。可以证明,通过定制纤维取向、纤维直径和层数,可以满足 TM 的所需特性。施加的薄胶原蛋白层密封了 MEW 打印膜的微孔,同时保持了有利的机械和声学特性。确定的特性有利于植入,与人类 TM 非常匹配,并支持新的上皮层生长。这证明了使用 MEW 制造仿生 TM 替代品的可能性。