Köpke Michael, Gerth Monica L, Maddock Danielle J, Mueller Alexander P, Liew FungMin, Simpson Séan D, Patrick Wayne M
LanzaTech NZ Ltd., Parnell, Auckland, New Zealand.
Appl Environ Microbiol. 2014 Jun;80(11):3394-403. doi: 10.1128/AEM.00301-14. Epub 2014 Mar 21.
Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production.
产乙酸细菌利用一氧化碳和/或二氧化碳加氢气作为其唯一的碳源和能源。利用这些微生物进行发酵过程有望从丰富的废气原料中生产化学品和生物燃料,同时减少工业温室气体排放。已知自养产乙醇梭菌在气体发酵过程中能合成源自丙酮酸的代谢产物乳酸和2,3-丁二醇。在工业上,2,3-丁二醇对化学品生产很有价值。在此,我们鉴定并表征了自养产乙醇梭菌中参与乳酸和2,3-丁二醇生物合成的酶。假定的自养产乙醇梭菌乳酸脱氢酶在大肠杆菌中表达时具有活性。通过克隆和表达乙酰乳酸合酶、乙酰乳酸脱羧酶和2,3-丁二醇脱氢酶的候选基因,在大肠杆菌中重建了2,3-丁二醇途径。在厌氧条件下,所得大肠杆菌菌株产生了1.1±0.2 mM的2R,3R-丁二醇(23 μM h⁻¹光密度单位⁻¹),这与自养产乙醇梭菌在含一氧化碳废气上生长时产生的水平相当。除了2,3-丁二醇脱氢酶外,我们还鉴定了一种严格依赖烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的伯仲醇脱氢酶(CaADH),它可以将乙偶姻还原为2,3-丁二醇。详细的动力学分析表明,CaADH能接受一系列含2、3和4个碳原子的底物,包括非生理性酮类丙酮和丁酮。CaADH对丙酮的高活性使我们预测并通过实验证实,自养产乙醇梭菌可以作为全细胞生物催化剂将外源丙酮转化为异丙醇。总之,我们的结果在功能上验证了自养产乙醇梭菌的2,3-丁二醇途径,将CaADH鉴定为进一步工程改造的靶点,并证明了自养产乙醇梭菌作为可持续化学品生产平台的潜力。