Suppr超能文献

涉及一种新型依赖NADPH的伯仲醇脱氢酶的产乙酸2,3-丁二醇途径的重建。

Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.

作者信息

Köpke Michael, Gerth Monica L, Maddock Danielle J, Mueller Alexander P, Liew FungMin, Simpson Séan D, Patrick Wayne M

机构信息

LanzaTech NZ Ltd., Parnell, Auckland, New Zealand.

出版信息

Appl Environ Microbiol. 2014 Jun;80(11):3394-403. doi: 10.1128/AEM.00301-14. Epub 2014 Mar 21.

Abstract

Acetogenic bacteria use CO and/or CO2 plus H2 as their sole carbon and energy sources. Fermentation processes with these organisms hold promise for producing chemicals and biofuels from abundant waste gas feedstocks while simultaneously reducing industrial greenhouse gas emissions. The acetogen Clostridium autoethanogenum is known to synthesize the pyruvate-derived metabolites lactate and 2,3-butanediol during gas fermentation. Industrially, 2,3-butanediol is valuable for chemical production. Here we identify and characterize the C. autoethanogenum enzymes for lactate and 2,3-butanediol biosynthesis. The putative C. autoethanogenum lactate dehydrogenase was active when expressed in Escherichia coli. The 2,3-butanediol pathway was reconstituted in E. coli by cloning and expressing the candidate genes for acetolactate synthase, acetolactate decarboxylase, and 2,3-butanediol dehydrogenase. Under anaerobic conditions, the resulting E. coli strain produced 1.1 ± 0.2 mM 2R,3R-butanediol (23 μM h(-1) optical density unit(-1)), which is comparable to the level produced by C. autoethanogenum during growth on CO-containing waste gases. In addition to the 2,3-butanediol dehydrogenase, we identified a strictly NADPH-dependent primary-secondary alcohol dehydrogenase (CaADH) that could reduce acetoin to 2,3-butanediol. Detailed kinetic analysis revealed that CaADH accepts a range of 2-, 3-, and 4-carbon substrates, including the nonphysiological ketones acetone and butanone. The high activity of CaADH toward acetone led us to predict, and confirm experimentally, that C. autoethanogenum can act as a whole-cell biocatalyst for converting exogenous acetone to isopropanol. Together, our results functionally validate the 2,3-butanediol pathway from C. autoethanogenum, identify CaADH as a target for further engineering, and demonstrate the potential of C. autoethanogenum as a platform for sustainable chemical production.

摘要

产乙酸细菌利用一氧化碳和/或二氧化碳加氢气作为其唯一的碳源和能源。利用这些微生物进行发酵过程有望从丰富的废气原料中生产化学品和生物燃料,同时减少工业温室气体排放。已知自养产乙醇梭菌在气体发酵过程中能合成源自丙酮酸的代谢产物乳酸和2,3-丁二醇。在工业上,2,3-丁二醇对化学品生产很有价值。在此,我们鉴定并表征了自养产乙醇梭菌中参与乳酸和2,3-丁二醇生物合成的酶。假定的自养产乙醇梭菌乳酸脱氢酶在大肠杆菌中表达时具有活性。通过克隆和表达乙酰乳酸合酶、乙酰乳酸脱羧酶和2,3-丁二醇脱氢酶的候选基因,在大肠杆菌中重建了2,3-丁二醇途径。在厌氧条件下,所得大肠杆菌菌株产生了1.1±0.2 mM的2R,3R-丁二醇(23 μM h⁻¹光密度单位⁻¹),这与自养产乙醇梭菌在含一氧化碳废气上生长时产生的水平相当。除了2,3-丁二醇脱氢酶外,我们还鉴定了一种严格依赖烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的伯仲醇脱氢酶(CaADH),它可以将乙偶姻还原为2,3-丁二醇。详细的动力学分析表明,CaADH能接受一系列含2、3和4个碳原子的底物,包括非生理性酮类丙酮和丁酮。CaADH对丙酮的高活性使我们预测并通过实验证实,自养产乙醇梭菌可以作为全细胞生物催化剂将外源丙酮转化为异丙醇。总之,我们的结果在功能上验证了自养产乙醇梭菌的2,3-丁二醇途径,将CaADH鉴定为进一步工程改造的靶点,并证明了自养产乙醇梭菌作为可持续化学品生产平台的潜力。

相似文献

1
Reconstruction of an acetogenic 2,3-butanediol pathway involving a novel NADPH-dependent primary-secondary alcohol dehydrogenase.
Appl Environ Microbiol. 2014 Jun;80(11):3394-403. doi: 10.1128/AEM.00301-14. Epub 2014 Mar 21.
2
Insights into CO2 Fixation Pathway of Clostridium autoethanogenum by Targeted Mutagenesis.
mBio. 2016 May 24;7(3):e00427-16. doi: 10.1128/mBio.00427-16.
3
Identification of acetoin reductases involved in 2,3-butanediol pathway in Klebsiella oxytoca.
J Biotechnol. 2014 Feb 20;172:59-66. doi: 10.1016/j.jbiotec.2013.12.007. Epub 2013 Dec 31.
4
Stereospecificity of Corynebacterium glutamicum 2,3-butanediol dehydrogenase and implications for the stereochemical purity of bioproduced 2,3-butanediol.
Appl Microbiol Biotechnol. 2016 Dec;100(24):10573-10583. doi: 10.1007/s00253-016-7860-6. Epub 2016 Sep 29.
5
Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production.
Appl Microbiol Biotechnol. 2017 Mar;101(6):2241-2250. doi: 10.1007/s00253-017-8172-1. Epub 2017 Feb 15.
6
A new NAD(H)-dependent meso-2,3-butanediol dehydrogenase from an industrially potential strain Serratia marcescens H30.
Appl Microbiol Biotechnol. 2014 Feb;98(3):1175-84. doi: 10.1007/s00253-013-4959-x. Epub 2013 May 12.
7
Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.
Appl Microbiol Biotechnol. 2016 Jan;100(2):719-28. doi: 10.1007/s00253-015-7030-2. Epub 2015 Oct 10.
8
Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052.
Appl Environ Microbiol. 2014 Mar;80(6):2011-20. doi: 10.1128/AEM.04007-13. Epub 2014 Jan 17.
9
Characterization of an acetoin reductase/2,3-butanediol dehydrogenase from Clostridium ljungdahlii DSM 13528.
Enzyme Microb Technol. 2015 Nov;79-80:1-7. doi: 10.1016/j.enzmictec.2015.06.011. Epub 2015 Jun 19.
10
2,3-butanediol production by acetogenic bacteria, an alternative route to chemical synthesis, using industrial waste gas.
Appl Environ Microbiol. 2011 Aug;77(15):5467-75. doi: 10.1128/AEM.00355-11. Epub 2011 Jun 17.

引用本文的文献

1
Understanding microbial syngas fermentation rates.
Appl Microbiol Biotechnol. 2024 Dec 20;108(1):540. doi: 10.1007/s00253-024-13364-3.
2
Separation of 2,3-Butanediol from Fermentation Broth via Cyclic and Simulated Moving Bed Adsorption Over Nano-MFI Zeolites.
ACS Sustain Chem Eng. 2024 Sep 12;12(38):14173-14186. doi: 10.1021/acssuschemeng.4c04121. eCollection 2024 Sep 23.
3
Engineered acetogenic bacteria as microbial cell factory for diversified biochemicals.
Front Bioeng Biotechnol. 2024 Jul 11;12:1395540. doi: 10.3389/fbioe.2024.1395540. eCollection 2024.
4
Continuous sulfide supply enhanced autotrophic production of alcohols with Clostridium ragsdalei.
Bioresour Bioprocess. 2022 Mar 3;9(1):15. doi: 10.1186/s40643-022-00506-6.
5
Recent progress in engineering to synthesize the biochemicals and biocommodities.
Synth Syst Biotechnol. 2023 Dec 15;9(1):19-25. doi: 10.1016/j.synbio.2023.12.001. eCollection 2024 Mar.
6
Heterologous Production of Isopropanol Using Metabolically Engineered Strains.
Bioengineering (Basel). 2023 Nov 30;10(12):1381. doi: 10.3390/bioengineering10121381.
7
Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens.
iScience. 2023 Nov 2;26(12):108383. doi: 10.1016/j.isci.2023.108383. eCollection 2023 Dec 15.
9
Model-driven approach for the production of butyrate from CO/H by a novel co-culture of and .
Front Microbiol. 2022 Dec 22;13:1064013. doi: 10.3389/fmicb.2022.1064013. eCollection 2022.
10
Techno-economic analysis of an integrated biorefinery to convert poplar into jet fuel, xylitol, and formic acid.
Biotechnol Biofuels Bioprod. 2022 Dec 20;15(1):143. doi: 10.1186/s13068-022-02246-3.

本文引用的文献

1
Trash to treasure: production of biofuels and commodity chemicals via syngas fermenting microorganisms.
Curr Opin Biotechnol. 2014 Jun;27:79-87. doi: 10.1016/j.copbio.2013.12.001. Epub 2013 Dec 28.
3
Molecular characterization of an NADPH-dependent acetoin reductase/2,3-butanediol dehydrogenase from Clostridium beijerinckii NCIMB 8052.
Appl Environ Microbiol. 2014 Mar;80(6):2011-20. doi: 10.1128/AEM.04007-13. Epub 2014 Jan 17.
4
Structure and mechanism of acetolactate decarboxylase.
ACS Chem Biol. 2013 Oct 18;8(10):2339-44. doi: 10.1021/cb400429h. Epub 2013 Aug 28.
6
Global carbon dioxide levels near worrisome milestone.
Nature. 2013 May 2;497(7447):13-4. doi: 10.1038/497013a.
7
Cyanobacterial conversion of carbon dioxide to 2,3-butanediol.
Proc Natl Acad Sci U S A. 2013 Jan 22;110(4):1249-54. doi: 10.1073/pnas.1213024110. Epub 2013 Jan 7.
9
Pathway engineering and synthetic biology using acetogens.
FEBS Lett. 2012 Jul 16;586(15):2191-8. doi: 10.1016/j.febslet.2012.04.043. Epub 2012 May 3.
10
Physiological response of Clostridium carboxidivorans during conversion of synthesis gas to solvents in a gas-fed bioreactor.
Biotechnol Bioeng. 2012 Nov;109(11):2720-8. doi: 10.1002/bit.24549. Epub 2012 May 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验