Suppr超能文献

利用代谢工程菌株异源生产异丙醇

Heterologous Production of Isopropanol Using Metabolically Engineered Strains.

作者信息

Höfele Franziska, Schoch Teresa, Oberlies Catarina, Dürre Peter

机构信息

Institute of Molecular Biology and Biotechnology of Prokaryotes, Ulm University, 89081 Ulm, Germany.

Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany.

出版信息

Bioengineering (Basel). 2023 Nov 30;10(12):1381. doi: 10.3390/bioengineering10121381.

Abstract

The depletion of fossil fuel resources and the CO emissions coupled with petroleum-based industrial processes present a relevant issue for the whole of society. An alternative to the fossil-based production of chemicals is microbial fermentation using acetogens. Acetogenic bacteria are able to metabolize CO or CO (+H) via the Wood-Ljungdahl pathway. As isopropanol is widely used in a variety of industrial branches, it is advantageous to find a fossil-independent production process. In this study, was employed to produce isopropanol via plasmid-based expression of the enzymes thiolase A, CoA-transferase, acetoacetate decarboxylase and secondary alcohol dehydrogenase. An examination of the enzymes originating from different organisms led to a maximum isopropanol production of 5.64 ± 1.08 mM using CO + H as the carbon and energy source. To this end, the genes (encoding thiolase A) and (encoding CoA-transferase) of , (encoding acetoacetate decarboxylase) originating from and (encoding secondary alcohol dehydrogenase) of DSM 6423 were employed. Since bottlenecks in the isopropanol production pathway are known, optimization of the strain was investigated, resulting in a 2.5-fold increase in isopropanol concentration.

摘要

化石燃料资源的枯竭以及与石油基工业过程相关的一氧化碳排放给整个社会带来了一个重要问题。利用产乙酸菌进行微生物发酵是基于化石的化学品生产的一种替代方法。产乙酸细菌能够通过伍德-柳格达尔途径代谢一氧化碳或一氧化碳(+氢气)。由于异丙醇在各种工业部门中广泛使用,找到一种不依赖化石的生产工艺是有利的。在这项研究中,通过基于质粒表达硫解酶A、辅酶A转移酶、乙酰乙酸脱羧酶和仲醇脱氢酶来生产异丙醇。对源自不同生物体的酶进行研究后,以一氧化碳 + 氢气作为碳源和能源,异丙醇的最大产量达到了5.64 ± 1.08 mM。为此,使用了来自梭菌属的基因(编码硫解酶A)和(编码辅酶A转移酶)、源自丙酮丁醇梭菌的(编码乙酰乙酸脱羧酶)以及来自嗜糖嗜热栖热菌DSM 6423的(编码仲醇脱氢酶)。由于已知异丙醇生产途径中的瓶颈,因此对菌株进行了优化研究,异丙醇浓度提高了2.5倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06e7/10741115/ece02ab4b35e/bioengineering-10-01381-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验