Wang Zhijie, Salah Mohamed Ben, Gu Bin, Islam Ali, Goela Aashish, Li Shuo
IEEE Trans Biomed Eng. 2014 Apr;61(4):1251-60. doi: 10.1109/TBME.2014.2299433.
Accurate estimation of the ventricular volumes is essential to the assessment of global cardiac functions. The existing estimation methods are mostly restricted to the left ventricle (LV), and often require segmentation which is challenging and computationally expensive. This paper proposes to estimate the volumes of both LV and right ventricle (RV) jointly with an efficient segmentation-free method. The proposed method employs an adapted Bayesian formulation. It introduces a novel likelihood function to exploit multiple appearance features, and a novel prior probability model to incorporate the area correlation between LV and RV cavities. The method is validated on a comprehensive dataset containing 56 clinical subjects (3360 images in total). The experimental results demonstrate that the estimated biventricular volumes are highly correlated to their independent ground truth. As a result, the proposed method enables a direct, efficient, and accurate assessment of global cardiac functions.
准确估计心室容积对于评估整体心脏功能至关重要。现有的估计方法大多局限于左心室(LV),并且通常需要进行分割,这具有挑战性且计算成本高昂。本文提出用一种高效的无需分割的方法联合估计左心室和右心室(RV)的容积。所提出的方法采用了一种适应性的贝叶斯公式。它引入了一种新颖的似然函数来利用多种外观特征,以及一种新颖的先验概率模型来纳入左心室和右心室腔之间的面积相关性。该方法在一个包含56名临床受试者(总共3360幅图像)的综合数据集上得到了验证。实验结果表明,估计的双心室容积与它们各自独立的真实值高度相关。因此,所提出的方法能够对整体心脏功能进行直接、高效且准确的评估。