Shandong University of Science and Technology, Qingdao, China.
Shandong Province Key Laboratory of Wisdom Mining Information Technology, Qingdao, China.
Sci Rep. 2023 Aug 19;13(1):13529. doi: 10.1038/s41598-023-40841-y.
Quantification of the cardiac function is vital for diagnosing and curing the cardiovascular diseases. Left ventricular function measurement is the most commonly used measure to evaluate the function of cardiac in clinical practice, how to improve the accuracy of left ventricular quantitative assessment results has always been the subject of research by medical researchers. Although considerable efforts have been put forward to measure the left ventricle (LV) automatically using deep learning methods, the accurate quantification is yet a challenge work as a result of the changeable anatomy structure of heart in the systolic diastolic cycle. Besides, most methods used direct regression method which lacks of visual based analysis. In this work, a deep learning segmentation and regression task-unified network with transformer and spatial-temporal convolution is proposed to segment and quantify the LV simultaneously. The segmentation module leverages a U-Net like 3D Transformer model to predict the contour of three anatomy structures, while the regression module learns spatial-temporal representations from the original images and the reconstruct feature map from segmentation path to estimate the finally desired quantification metrics. Furthermore, we employ a joint task loss function to train the two module networks. Our framework is evaluated on the MICCAI 2017 Left Ventricle Full Quantification Challenge dataset. The results of experiments demonstrate the effectiveness of our framework, which achieves competitive cardiac quantification metric results and at the same time produces visualized segmentation results that are conducive to later analysis.
心脏功能的量化对于心血管疾病的诊断和治疗至关重要。左心室功能测量是临床实践中评估心脏功能最常用的方法,如何提高左心室定量评估结果的准确性一直是医学研究人员研究的课题。尽管已经提出了相当多的使用深度学习方法自动测量左心室(LV)的方法,但由于心脏在收缩和舒张周期中的解剖结构变化,准确的量化仍然是一项具有挑战性的工作。此外,大多数方法使用直接回归方法,缺乏基于视觉的分析。在这项工作中,提出了一种基于转换器和时空卷积的深度学习分割和回归任务统一网络,用于同时分割和量化 LV。分割模块利用类似于 U-Net 的 3D 转换器模型来预测三个解剖结构的轮廓,而回归模块则从原始图像和分割路径中的重建特征图中学习时空表示,以估计最终所需的量化指标。此外,我们采用联合任务损失函数来训练两个模块网络。我们的框架在 MICCAI 2017 左心室全量化挑战赛数据集上进行了评估。实验结果表明了我们框架的有效性,它实现了具有竞争力的心脏量化指标结果,同时生成了可视化的分割结果,有利于后续分析。