Suppr超能文献

中性神经酰胺酶和神经鞘氨醇在创伤性脑损伤导致的线粒体功能障碍中的重要作用。

Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury.

机构信息

From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401.

出版信息

J Biol Chem. 2014 May 9;289(19):13142-54. doi: 10.1074/jbc.M113.530311. Epub 2014 Mar 21.

Abstract

In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.

摘要

除了直接的脑损伤,创伤性脑损伤(TBI)还会引发一连串的病理生理事件,导致继发性损伤。继发性损伤的生化和细胞机制尚未完全了解。在此,我们报告了在 TBI 小鼠模型中,大脑神经鞘脂代谢的显著失调。神经鞘脂谱分析表明,鞘磷脂种类和神经醇同时增加,同时新合成的神经鞘脂生物合成中间产物上调。对细胞内神经醇积累部位的研究表明,由于中性神经酰胺酶(NCDase)的激活和神经醇激酶 2(SphK2)活性的降低,线粒体中神经醇的含量升高。基因表达没有变化表明,这种酶活性的变化是由翻译后机制引起的。免疫沉淀研究表明,SphK2 与 NCDase 和线粒体中的细胞色素氧化酶(COX)亚基 1 复合,脑损伤阻止了 SphK2 与复合物的结合。功能研究表明,神经醇的积累导致线粒体中细胞色素氧化酶(COX)的活性降低,而 COX 是线粒体电子传递链的限速酶。敲低 NCDase 可减少线粒体中神经醇的积累,并在脑损伤后保持 COX 活性。此外,NCDase 敲低可改善创伤后大脑功能的恢复并减轻脑挫伤体积。这些研究强调了一种涉及线粒体中神经鞘脂代谢酶紊乱的继发性 TBI 的新机制,并表明线粒体神经醇在创伤后促进脑损伤中起关键作用。

相似文献

1
Essential roles of neutral ceramidase and sphingosine in mitochondrial dysfunction due to traumatic brain injury.
J Biol Chem. 2014 May 9;289(19):13142-54. doi: 10.1074/jbc.M113.530311. Epub 2014 Mar 21.
6
SIRT3 Deacetylates Ceramide Synthases: IMPLICATIONS FOR MITOCHONDRIAL DYSFUNCTION AND BRAIN INJURY.
J Biol Chem. 2016 Jan 22;291(4):1957-1973. doi: 10.1074/jbc.M115.668228. Epub 2015 Nov 30.
8
Acid sphingomyelinase deficiency protects mitochondria and improves function recovery after brain injury.
J Lipid Res. 2019 Mar;60(3):609-623. doi: 10.1194/jlr.M091132. Epub 2019 Jan 20.
10
SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism.
J Biol Chem. 2005 Nov 4;280(44):37118-29. doi: 10.1074/jbc.M502207200. Epub 2005 Aug 23.

引用本文的文献

1
Mechanism of fumonisin B1 on growth performance and intestinal structural integrity of juvenile grass carp ().
Anim Nutr. 2025 Jan 25;21:193-206. doi: 10.1016/j.aninu.2024.11.023. eCollection 2025 Jun.
2
Hydrogel in the Treatment of Traumatic Brain Injury.
Biomater Res. 2024 Sep 26;28:0085. doi: 10.34133/bmr.0085. eCollection 2024.
3
Mitochondrial Transfer in the Neurovascular Unit, Not Only for Energy Rescue: A Systematic Review.
Aging Dis. 2024 Jul 16;16(4):2008-2035. doi: 10.14336/AD.2024.0461.
4
Sphingolipid changes in mouse brain and plasma after mild traumatic brain injury at the acute phases.
Lipids Health Dis. 2024 Jun 27;23(1):200. doi: 10.1186/s12944-024-02186-x.
7
Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury.
Cells. 2023 Nov 8;12(22):2589. doi: 10.3390/cells12222589.
8
Neutral ceramidase deficiency protects against cisplatin-induced acute kidney injury.
J Lipid Res. 2022 Mar;63(3):100179. doi: 10.1016/j.jlr.2022.100179. Epub 2022 Feb 10.
9
Dynamics of Choline-Containing Phospholipids in Traumatic Brain Injury and Associated Comorbidities.
Int J Mol Sci. 2021 Oct 20;22(21):11313. doi: 10.3390/ijms222111313.
10
Compartmentalization of Sphingolipid metabolism: Implications for signaling and therapy.
Pharmacol Ther. 2022 Apr;232:108005. doi: 10.1016/j.pharmthera.2021.108005. Epub 2021 Sep 25.

本文引用的文献

1
Ablation of ceramide synthase 2 causes chronic oxidative stress due to disruption of the mitochondrial respiratory chain.
J Biol Chem. 2013 Feb 15;288(7):4947-56. doi: 10.1074/jbc.M112.402719. Epub 2013 Jan 2.
2
Post-translational regulation of sphingosine kinases.
Biochim Biophys Acta. 2013 Jan;1831(1):147-56. doi: 10.1016/j.bbalip.2012.07.005. Epub 2012 Jul 16.
3
Cytochrome c oxidase and its role in neurodegeneration and neuroprotection.
Adv Exp Med Biol. 2012;748:305-39. doi: 10.1007/978-1-4614-3573-0_13.
6
Ceramide and mitochondria in ischemic brain injury.
Int J Biochem Mol Biol. 2011;2(4):347-61. Epub 2011 Nov 25.
7
Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics.
Chem Rev. 2011 Oct 12;111(10):6387-422. doi: 10.1021/cr2002917. Epub 2011 Sep 26.
8
Many ceramides.
J Biol Chem. 2011 Aug 12;286(32):27855-62. doi: 10.1074/jbc.R111.254359. Epub 2011 Jun 21.
10
Neutral sphingomyelinase-2 mediates growth arrest by retinoic acid through modulation of ribosomal S6 kinase.
J Biol Chem. 2011 Jun 17;286(24):21565-76. doi: 10.1074/jbc.M110.193375. Epub 2011 May 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验