From the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina 29401.
J Biol Chem. 2014 May 9;289(19):13142-54. doi: 10.1074/jbc.M113.530311. Epub 2014 Mar 21.
In addition to immediate brain damage, traumatic brain injury (TBI) initiates a cascade of pathophysiological events producing secondary injury. The biochemical and cellular mechanisms that comprise secondary injury are not entirely understood. Herein, we report a substantial deregulation of cerebral sphingolipid metabolism in a mouse model of TBI. Sphingolipid profile analysis demonstrated increases in sphingomyelin species and sphingosine concurrently with up-regulation of intermediates of de novo sphingolipid biosynthesis in the brain. Investigation of intracellular sites of sphingosine accumulation revealed an elevation of sphingosine in mitochondria due to the activation of neutral ceramidase (NCDase) and the reduced activity of sphingosine kinase 2 (SphK2). The lack of change in gene expression suggested that post-translational mechanisms are responsible for the shift in the activities of both enzymes. Immunoprecipitation studies revealed that SphK2 is complexed with NCDase and cytochrome oxidase (COX) subunit 1 in mitochondria and that brain injury hindered SphK2 association with the complex. Functional studies showed that sphingosine accumulation resulted in a decreased activity of COX, a rate-limiting enzyme of the mitochondrial electron transport chain. Knocking down NCDase reduced sphingosine accumulation in mitochondria and preserved COX activity after the brain injury. Also, NCDase knockdown improved brain function recovery and lessened brain contusion volume after trauma. These studies highlight a novel mechanism of secondary TBI involving a disturbance of sphingolipid-metabolizing enzymes in mitochondria and suggest a critical role for mitochondrial sphingosine in promoting brain injury after trauma.
除了直接的脑损伤,创伤性脑损伤(TBI)还会引发一连串的病理生理事件,导致继发性损伤。继发性损伤的生化和细胞机制尚未完全了解。在此,我们报告了在 TBI 小鼠模型中,大脑神经鞘脂代谢的显著失调。神经鞘脂谱分析表明,鞘磷脂种类和神经醇同时增加,同时新合成的神经鞘脂生物合成中间产物上调。对细胞内神经醇积累部位的研究表明,由于中性神经酰胺酶(NCDase)的激活和神经醇激酶 2(SphK2)活性的降低,线粒体中神经醇的含量升高。基因表达没有变化表明,这种酶活性的变化是由翻译后机制引起的。免疫沉淀研究表明,SphK2 与 NCDase 和线粒体中的细胞色素氧化酶(COX)亚基 1 复合,脑损伤阻止了 SphK2 与复合物的结合。功能研究表明,神经醇的积累导致线粒体中细胞色素氧化酶(COX)的活性降低,而 COX 是线粒体电子传递链的限速酶。敲低 NCDase 可减少线粒体中神经醇的积累,并在脑损伤后保持 COX 活性。此外,NCDase 敲低可改善创伤后大脑功能的恢复并减轻脑挫伤体积。这些研究强调了一种涉及线粒体中神经鞘脂代谢酶紊乱的继发性 TBI 的新机制,并表明线粒体神经醇在创伤后促进脑损伤中起关键作用。