Suppr超能文献

生物标志物的拉曼光谱光谱指纹分析在创伤性脑损伤中的应用

Raman Spectroscopy Spectral Fingerprints of Biomarkers of Traumatic Brain Injury.

机构信息

Advanced Nanomaterials Structures and Applications Laboratories, School of Chemical Engineering, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

Institute of Healthcare Technologies, Mindelsohn Way, Birmingham B15 2TH, UK.

出版信息

Cells. 2023 Nov 8;12(22):2589. doi: 10.3390/cells12222589.

Abstract

Traumatic brain injury (TBI) affects millions of people of all ages around the globe. TBI is notoriously hard to diagnose at the point of care, resulting in incorrect patient management, avoidable death and disability, long-term neurodegenerative complications, and increased costs. It is vital to develop timely, alternative diagnostics for TBI to assist triage and clinical decision-making, complementary to current techniques such as neuroimaging and cognitive assessment. These could deliver rapid, quantitative TBI detection, by obtaining information on biochemical changes from patient's biofluids. If available, this would reduce mis-triage, save healthcare providers costs (both over- and under-triage are expensive) and improve outcomes by guiding early management. Herein, we utilize Raman spectroscopy-based detection to profile a panel of 18 raw (human, animal, and synthetically derived) TBI-indicative biomarkers (N-acetyl-aspartic acid (NAA), Ganglioside, Glutathione (GSH), Neuron Specific Enolase (NSE), Glial Fibrillary Acidic Protein (GFAP), Ubiquitin C-terminal Hydrolase L1 (UCHL1), Cholesterol, D-Serine, Sphingomyelin, Sulfatides, Cardiolipin, Interleukin-6 (IL-6), S100B, Galactocerebroside, Beta-D-(+)-Glucose, Myo-Inositol, Interleukin-18 (IL-18), Neurofilament Light Chain (NFL)) and their aqueous solution. The subsequently derived unique spectral reference library, exploiting four excitation lasers of 514, 633, 785, and 830 nm, will aid the development of rapid, non-destructive, and label-free spectroscopy-based neuro-diagnostic technologies. These biomolecules, released during cellular damage, provide additional means of diagnosing TBI and assessing the severity of injury. The spectroscopic temporal profiles of the studied biofluid neuro-markers are classed according to their acute, sub-acute, and chronic temporal injury phases and we have further generated detailed peak assignment tables for each brain-specific biomolecule within each injury phase. The intensity ratios of significant peaks, yielding the combined unique spectroscopic barcode for each brain-injury marker, are compared to assess variance between lasers, with the smallest variance found for UCHL1 ( = 0.000164) and the highest for sulfatide ( = 0.158). Overall, this work paves the way for defining and setting the most appropriate diagnostic time window for detection following brain injury. Further rapid and specific detection of these biomarkers, from easily accessible biofluids, would not only enable the triage of TBI, predict outcomes, indicate the progress of recovery, and save healthcare providers costs, but also cement the potential of Raman-based spectroscopy as a powerful tool for neurodiagnostics.

摘要

创伤性脑损伤(TBI)影响着全球各个年龄段的数百万人。TBI 在护理点极难诊断,导致患者管理不当、可避免的死亡和残疾、长期神经退行性并发症和成本增加。开发及时的、替代的 TBI 诊断方法对于辅助分诊和临床决策至关重要,这些方法可以补充神经影像学和认知评估等当前技术。这些方法可以通过从患者的生物流体中获取生化变化信息,快速、定量地检测 TBI。如果有这种方法,将减少分诊错误,节省医疗保健提供者的成本(过度和不足分诊都很昂贵),并通过指导早期管理来改善结果。在此,我们利用基于拉曼光谱的检测方法来分析一组 18 种原始(人类、动物和合成衍生)TBI 指示生物标志物(N-乙酰天冬氨酸(NAA)、神经节苷脂、谷胱甘肽(GSH)、神经元特异性烯醇化酶(NSE)、胶质纤维酸性蛋白(GFAP)、泛素 C 端水解酶 L1(UCHL1)、胆固醇、D-丝氨酸、神经鞘磷脂、硫酸脂、心磷脂、白细胞介素 6(IL-6)、S100B、半乳糖脑苷脂、β-D-(+)-葡萄糖、肌醇、白细胞介素 18(IL-18)、神经丝轻链(NFL))及其水溶液。随后得出的独特光谱参考库,利用 514nm、633nm、785nm 和 830nm 四种激发激光,将有助于开发快速、无损和无标记的基于光谱的神经诊断技术。这些在细胞损伤过程中释放的生物分子为诊断 TBI 和评估损伤严重程度提供了额外的手段。研究生物流体神经标志物的光谱时间曲线根据其急性、亚急性和慢性损伤阶段进行分类,我们还为每个损伤阶段的每个脑特异性生物分子生成了详细的峰分配表。通过比较每个脑损伤标志物的显著峰的强度比,生成组合的独特光谱条码,以评估激光之间的方差,UCHL1 的方差最小( = 0.000164),硫酸脂的方差最大( = 0.158)。总的来说,这项工作为定义和设置脑损伤后最适当的诊断时间窗口铺平了道路。从容易获得的生物流体中进一步快速和特异性地检测这些生物标志物,不仅可以实现 TBI 的分诊,预测结果,指示恢复进展,节省医疗保健提供者的成本,还可以巩固基于拉曼光谱的技术作为神经诊断工具的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/10670390/b5e8f894d9fb/cells-12-02589-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验