Suppr超能文献

顾及部分干扰和删失的疫苗效果逆概率加权估计量。

Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring.

机构信息

Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina.

Department of Biostatistics, University of Washington, Seattle, Washington.

出版信息

Biometrics. 2022 Jun;78(2):777-788. doi: 10.1111/biom.13459. Epub 2021 Apr 14.

Abstract

Estimating population-level effects of a vaccine is challenging because there may be interference, that is, the outcome of one individual may depend on the vaccination status of another individual. Partial interference occurs when individuals can be partitioned into groups such that interference occurs only within groups. In the absence of interference, inverse probability weighted (IPW) estimators are commonly used to draw inference about causal effects of an exposure or treatment. Tchetgen Tchetgen and VanderWeele proposed a modified IPW estimator for causal effects in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the setting where the outcome is subject to right censoring using inverse probability of censoring weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The large sample properties of the IPCW estimators are derived, and simulation studies are presented demonstrating the estimators' performance in finite samples. The methods are then used to analyze data from the cholera vaccine study.

摘要

估计疫苗对人群的影响具有挑战性,因为可能存在干扰,即一个人的结果可能取决于另一个人的疫苗接种状态。当个体可以被分为群组时,就会发生部分干扰,并且只有在群组内才会发生干扰。在不存在干扰的情况下,常用逆概率加权(Inverse Probability Weighting,简称 IPW)估计量来推断暴露或治疗的因果效应。Tchetgen Tchetgen 和 VanderWeele 提出了一种在存在部分干扰的情况下用于因果效应的修正 IPW 估计量。受孟加拉国霍乱疫苗研究的启发,本文考虑将 Tchetgen Tchetgen 和 VanderWeele 的 IPW 估计量扩展到使用逆概率删失权重(Inverse Probability of Censoring Weights,简称 IPCW)的情况下,该情况下结局受到右删失的影响。删失权重使用比例风险脆弱性模型进行估计。推导了 IPCW 估计量的大样本性质,并进行了模拟研究,以展示在有限样本中估计量的性能。然后,这些方法被用于分析来自霍乱疫苗研究的数据。

相似文献

1
Inverse probability weighted estimators of vaccine effects accommodating partial interference and censoring.
Biometrics. 2022 Jun;78(2):777-788. doi: 10.1111/biom.13459. Epub 2021 Apr 14.
2
Assessing effects of cholera vaccination in the presence of interference.
Biometrics. 2014 Sep;70(3):731-44. doi: 10.1111/biom.12184. Epub 2014 May 20.
3
A Recipe for inferference: Start with Causal Inference. Add Interference. Mix Well with R.
J Stat Softw. 2017;82. doi: 10.18637/jss.v082.i02. Epub 2017 Nov 29.
4
Randomization inference with general interference and censoring.
Biometrics. 2020 Mar;76(1):235-245. doi: 10.1111/biom.13125. Epub 2019 Oct 15.
5
Doubly Robust Estimation in Observational Studies with Partial Interference.
Stat (Int Stat Inst). 2019;8(1). doi: 10.1002/sta4.214. Epub 2019 Jan 10.
6
On inverse probability-weighted estimators in the presence of interference.
Biometrika. 2016 Dec;103(4):829-842. doi: 10.1093/biomet/asw047. Epub 2016 Dec 8.
7
Model misspecification and bias for inverse probability weighting estimators of average causal effects.
Biom J. 2023 Feb;65(2):e2100118. doi: 10.1002/bimj.202100118. Epub 2022 Aug 31.
8
Correcting for dependent censoring in routine outcome monitoring data by applying the inverse probability censoring weighted estimator.
Stat Methods Med Res. 2018 Feb;27(2):323-335. doi: 10.1177/0962280216628900. Epub 2016 Mar 17.
9
Model selection for survival individualized treatment rules using the jackknife estimator.
BMC Med Res Methodol. 2022 Dec 22;22(1):328. doi: 10.1186/s12874-022-01811-6.

引用本文的文献

1
Designs for Vaccine Studies.
Annu Rev Stat Appl. 2025 Mar;12:1-18. doi: 10.1146/annurev-statistics-033121-120121. Epub 2024 Oct 30.
2
Causal Estimands for Analyses of Averted and Avertible Outcomes due to Infectious Disease Interventions.
Epidemiology. 2025 May 1;36(3):363-373. doi: 10.1097/EDE.0000000000001839. Epub 2025 Jan 24.
3
G-formula for observational studies under stratified interference, with application to bed net use on malaria.
Stat Med. 2024 Jul 10;43(15):2853-2868. doi: 10.1002/sim.10102. Epub 2024 May 10.
4
Propensity Score in the Face of Interference: Discussion of.
Obs Stud. 2023;9(1):125-131. doi: 10.1353/obs.2023.0013.

本文引用的文献

1
Auto-G-Computation of Causal Effects on a Network.
J Am Stat Assoc. 2021;116(534):833-844. doi: 10.1080/01621459.2020.1811098. Epub 2020 Oct 1.
2
The Calculus of M-Estimation in R with geex.
J Stat Softw. 2020 Feb;92(2). doi: 10.18637/jss.v092.i02. Epub 2020 Feb 18.
3
Doubly Robust Estimation in Observational Studies with Partial Interference.
Stat (Int Stat Inst). 2019;8(1). doi: 10.1002/sta4.214. Epub 2019 Jan 10.
4
Randomization inference with general interference and censoring.
Biometrics. 2020 Mar;76(1):235-245. doi: 10.1111/biom.13125. Epub 2019 Oct 15.
5
Causal inference with interfering units for cluster and population level treatment allocation programs.
Biometrics. 2019 Sep;75(3):778-787. doi: 10.1111/biom.13049. Epub 2019 Apr 13.
6
On inverse probability-weighted estimators in the presence of interference.
Biometrika. 2016 Dec;103(4):829-842. doi: 10.1093/biomet/asw047. Epub 2016 Dec 8.
8
Assessing effects of cholera vaccination in the presence of interference.
Biometrics. 2014 Sep;70(3):731-44. doi: 10.1111/biom.12184. Epub 2014 May 20.
9
The role of vaccine coverage within social networks in cholera vaccine efficacy.
PLoS One. 2011;6(7):e22971. doi: 10.1371/journal.pone.0022971. Epub 2011 Jul 29.
10
On causal inference in the presence of interference.
Stat Methods Med Res. 2012 Feb;21(1):55-75. doi: 10.1177/0962280210386779. Epub 2010 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验