Suppr超能文献

随机临床试验中生存与治疗效果的地标估计

Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial.

作者信息

Parast Layla, Tian Lu, Cai Tianxi

机构信息

RAND Corporation, Santa Monica, CA 90401.

Stanford University, Department of Health, Research and Policy, Stanford, CA 94305.

出版信息

J Am Stat Assoc. 2014 Jan 1;109(505):384-394. doi: 10.1080/01621459.2013.842488.

Abstract

In many studies with a survival outcome, it is often not feasible to fully observe the primary event of interest. This often leads to heavy censoring and thus, difficulty in efficiently estimating survival or comparing survival rates between two groups. In certain diseases, baseline covariates and the event time of non-fatal intermediate events may be associated with overall survival. In these settings, incorporating such additional information may lead to gains in efficiency in estimation of survival and testing for a difference in survival between two treatment groups. If gains in efficiency can be achieved, it may then be possible to decrease the sample size of patients required for a study to achieve a particular power level or decrease the duration of the study. Most existing methods for incorporating intermediate events and covariates to predict survival focus on estimation of relative risk parameters and/or the joint distribution of events under semiparametric models. However, in practice, these model assumptions may not hold and hence may lead to biased estimates of the marginal survival. In this paper, we propose a semi-nonparametric two-stage procedure to estimate and compare -year survival rates by incorporating intermediate event information observed before some landmark time, which serves as a useful approach to overcome semi-competing risks issues. In a randomized clinical trial setting, we further improve efficiency through an additional calibration step. Simulation studies demonstrate substantial potential gains in efficiency in terms of estimation and power. We illustrate our proposed procedures using an AIDS Clinical Trial Protocol 175 dataset by estimating survival and examining the difference in survival between two treatment groups: zidovudine and zidovudine plus zalcitabine.

摘要

在许多有生存结局的研究中,要完全观察到感兴趣的主要事件往往是不可行的。这常常导致严重的删失,进而难以有效地估计生存率或比较两组之间的生存率。在某些疾病中,基线协变量和非致命中间事件的发生时间可能与总生存相关。在这些情况下,纳入此类额外信息可能会提高生存估计的效率,并有助于检验两个治疗组之间的生存差异。如果能够提高效率,那么就有可能减少为达到特定检验效能所需的患者样本量,或者缩短研究持续时间。大多数现有的纳入中间事件和协变量来预测生存的方法都集中在半参数模型下相对风险参数的估计和/或事件的联合分布上。然而,在实际中,这些模型假设可能不成立,从而可能导致边际生存估计有偏差。在本文中,我们提出了一种半非参数两阶段程序,通过纳入在某个标志性时间之前观察到的中间事件信息来估计和比较年生存率,这是克服半竞争风险问题的一种有效方法。在随机临床试验环境中,我们通过额外的校准步骤进一步提高效率。模拟研究表明,在估计和检验效能方面有显著的潜在效率提升。我们通过估计生存率并检验齐多夫定和齐多夫定加扎西他滨这两个治疗组之间生存率的差异,使用艾滋病临床试验方案175数据集来说明我们提出的程序。

相似文献

1
Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial.
J Am Stat Assoc. 2014 Jan 1;109(505):384-394. doi: 10.1080/01621459.2013.842488.
2
Landmark estimation of survival and treatment effects in observational studies.
Lifetime Data Anal. 2017 Apr;23(2):161-182. doi: 10.1007/s10985-016-9358-z. Epub 2016 Feb 15.
4
Landmark Prediction of Long Term Survival Incorporating Short Term Event Time Information.
J Am Stat Assoc. 2012;107(500):1492-1501. doi: 10.1080/01621459.2012.721281. Epub 2012 Aug 21.
5
Semi-supervised calibration of noisy event risk (SCANER) with electronic health records.
J Biomed Inform. 2023 Aug;144:104425. doi: 10.1016/j.jbi.2023.104425. Epub 2023 Jun 16.
6
Augmented estimation for t-year survival with censored regression models.
Biometrics. 2017 Dec;73(4):1169-1178. doi: 10.1111/biom.12683. Epub 2017 Mar 10.
7
A note on competing risks in survival data analysis.
Br J Cancer. 2004 Oct 4;91(7):1229-35. doi: 10.1038/sj.bjc.6602102.
9
10
Bias-adjusted Kaplan-Meier survival curves for marginal treatment effect in observational studies.
J Biopharm Stat. 2019;29(4):592-605. doi: 10.1080/10543406.2019.1633659. Epub 2019 Jul 9.

引用本文的文献

3
Evaluating US Multiple Listing Practices in Lung Transplantation: Unveiling Hidden Disparities.
Chest. 2024 Dec;166(6):1442-1454. doi: 10.1016/j.chest.2024.06.3822. Epub 2024 Aug 16.
4
Regression of nonalcoholic fatty liver disease is associated with reduced risk of incident diabetes: A longitudinal cohort study.
PLoS One. 2023 Jul 18;18(7):e0288820. doi: 10.1371/journal.pone.0288820. eCollection 2023.
5
Semi-supervised calibration of noisy event risk (SCANER) with electronic health records.
J Biomed Inform. 2023 Aug;144:104425. doi: 10.1016/j.jbi.2023.104425. Epub 2023 Jun 16.
9
Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy.
Mathematics (Basel). 2022 Feb;10(3). doi: 10.3390/math10030465. Epub 2022 Jan 31.

本文引用的文献

1
Landmark Prediction of Long Term Survival Incorporating Short Term Event Time Information.
J Am Stat Assoc. 2012;107(500):1492-1501. doi: 10.1080/01621459.2012.721281. Epub 2012 Aug 21.
2
Calibrating parametric subject-specific risk estimation.
Biometrika. 2010 Jun;97(2):389-404. doi: 10.1093/biomet/asq012.
3
Semiparametric dimension reduction estimation for mean response with missing data.
Biometrika. 2010 Jun;97(2):305-319. doi: 10.1093/biomet/asq005. Epub 2010 Apr 23.
4
On the covariate-adjusted estimation for an overall treatment difference with data from a randomized comparative clinical trial.
Biostatistics. 2012 Apr;13(2):256-73. doi: 10.1093/biostatistics/kxr050. Epub 2012 Jan 30.
5
Dimension reduced kernel estimation for distribution function with incomplete data.
J Stat Plan Inference. 2011 Sep;141(9):3084-3093. doi: 10.1016/j.jspi.2011.03.030.
6
Incorporating short-term outcome information to predict long-term survival with discrete markers.
Biom J. 2011 Mar;53(2):294-307. doi: 10.1002/bimj.201000150. Epub 2011 Feb 21.
7
Competing risks and time-dependent covariates.
Biom J. 2010 Feb;52(1):138-58. doi: 10.1002/bimj.200900076.
8
Dynamic predicting by landmarking as an alternative for multi-state modeling: an application to acute lymphoid leukemia data.
Lifetime Data Anal. 2008 Dec;14(4):447-63. doi: 10.1007/s10985-008-9099-8. Epub 2008 Oct 3.
10
Semiparametric analysis of survival data with left truncation and dependent right censoring.
Biometrics. 2005 Jun;61(2):567-75. doi: 10.1111/j.1541-0420.2005.00335.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验