Suppr超能文献

高能量密度激光损伤前驱体及其在熔融石英中的缓解措施

High fluence laser damage precursors and their mitigation in fused silica.

作者信息

Bude J, Miller P, Baxamusa S, Shen N, Laurence T, Steele W, Suratwala T, Wong L, Carr W, Cross D, Monticelli M

出版信息

Opt Express. 2014 Mar 10;22(5):5839-51. doi: 10.1364/OE.22.005839.

Abstract

The use of any optical material is limited at high fluences by laser-induced damage to optical surfaces. In many optical materials, the damage results from a series of sources which initiate at a large range of fluences and intensities. Much progress has been made recently eliminating silica surface damage due to fracture-related precursors at relatively low fluences (i.e., less than 10 J/cm(2), when damaged by 355 nm, 5 ns pulses). At higher fluence, most materials are limited by other classes of damage precursors which exhibit a strong threshold behavior and high areal density (>10(5) cm(-2)); we refer to these collectively as high fluence precursors. Here, we show that a variety of nominally transparent materials in trace quantities can act as surface damage precursors. We show that by minimizing the presence of precipitates during chemical processing, we can reduce damage density in silica at high fluence by more than 100 times while shifting the fluence onset of observable damage by about 7 J/cm(2). A better understanding of the complex chemistry and physics of cleaning, rinsing, and drying will likely lead to even further improvements in the damage performance of silica and potentially other optical materials.

摘要

在高能量密度下,任何光学材料的使用都会因激光对光学表面的损伤而受到限制。在许多光学材料中,损伤源于一系列在大范围能量密度和强度下引发的源。最近在消除相对低能量密度(即当被355nm、5ns脉冲损伤时小于10J/cm²)下与断裂相关的前驱体导致的二氧化硅表面损伤方面取得了很大进展。在更高能量密度下,大多数材料受到其他类型损伤前驱体的限制,这些前驱体表现出强烈的阈值行为和高面密度(>10⁵cm⁻²);我们将这些统称为高能量密度前驱体。在此,我们表明痕量的各种名义上透明的材料可作为表面损伤前驱体。我们表明,通过在化学处理过程中尽量减少沉淀物的存在,我们可以将高能量密度下二氧化硅中的损伤密度降低100倍以上,同时将可观察到损伤的能量密度起始点提高约7J/cm²。对清洗、冲洗和干燥的复杂化学和物理过程有更深入的了解可能会进一步改善二氧化硅以及潜在的其他光学材料的损伤性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验