Alayed Mrwan, Al Fayez Nojoud, Alfihed Salman, Alshamrani Naif, Alghannam Fahad
Microelectronics and Semiconductors Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia.
Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia.
Materials (Basel). 2025 Jun 5;18(11):2657. doi: 10.3390/ma18112657.
Glass-based microfluidic devices are essential for applications such as diagnostics and drug discovery, which utilize their optical clarity and chemical stability. This review systematically analyzes pulsed laser micromachining as a transformative technique for fabricating glass-based microfluidic devices, addressing the limitations of conventional methods. By examining three pulse regimes-long (≥nanosecond), short (picosecond), and ultrashort (femtosecond)-this study evaluates how laser parameters (fluence, scanning speed, pulse duration, repetition rate, wavelength) and glass properties influence ablation efficiency and quality. A higher fluence improves the material ablation efficiency across all the regimes but poses risks of thermal damage or plasma shielding in ultrashort pulses. Optimizing the scanning speed balances the depth and the surface quality, with slower speeds enhancing the channel depth but requiring heat accumulation mitigation. Shorter pulses (femtosecond regime) achieve greater precision (feature resolution) and minimal heat-affected zones through nonlinear absorption, while long pulses enable rapid deep-channel fabrication but with increased thermal stress. Elevating the repetition rate improves the material ablation rates but reduces the surface quality. The influence of wavelength on efficiency and quality varies across the three pulse regimes. Material selection is critical to outcomes and potential applications: fused silica demonstrates a superior surface quality due to low thermal expansion, while soda-lime glass provides cost-effective prototyping. The review emphasizes the advantages of laser micromachining and the benefits of a wide range of applications. Future directions should focus on optimizing the process parameters to improve the efficiency and quality of the produced devices at a lower cost to expand their uses in biomedical, environmental, and quantum applications.
基于玻璃的微流控装置对于诊断和药物发现等应用至关重要,这些应用利用了其光学透明度和化学稳定性。本综述系统地分析了脉冲激光微加工作为制造基于玻璃的微流控装置的变革性技术,解决了传统方法的局限性。通过研究三种脉冲模式——长脉冲(≥纳秒)、短脉冲(皮秒)和超短脉冲(飞秒)——本研究评估了激光参数(能量密度、扫描速度、脉冲持续时间、重复频率、波长)和玻璃特性如何影响烧蚀效率和质量。在所有模式下,较高的能量密度都能提高材料烧蚀效率,但在超短脉冲中会带来热损伤或等离子体屏蔽的风险。优化扫描速度可平衡深度和表面质量,较慢的速度会增加通道深度,但需要减轻热积累。较短的脉冲(飞秒模式)通过非线性吸收实现更高的精度(特征分辨率)和最小的热影响区,而长脉冲能够快速制造深通道,但会增加热应力。提高重复频率可提高材料烧蚀速率,但会降低表面质量。波长对效率和质量的影响在三种脉冲模式下各不相同。材料选择对结果和潜在应用至关重要:熔融石英由于热膨胀低而具有卓越的表面质量,而钠钙玻璃则提供了具有成本效益的原型制作。本综述强调了激光微加工的优势以及广泛应用的好处。未来的方向应集中在优化工艺参数,以更低的成本提高所生产装置的效率和质量,从而扩大其在生物医学、环境和量子应用中的用途。