Bendali Amel, Agnès Charles, Meffert Simone, Forster Valérie, Bongrain Alexandre, Arnault Jean-Charles, Sahel José-Alain, Offenhäusser Andreas, Bergonzo Philippe, Picaud Serge
INSERM U968, Institut de la Vision, Paris, France; Sorbonne Universités, UPMC Univ Paris 06 UMR_S968, Institut de la Vision, Paris, France; CNRS UMR7210, Institut de la Vision, Paris, France.
CEA-LIST, Diamond Sensors Laboratory, Saclay, Gif-sur-Yvette, France.
PLoS One. 2014 Mar 24;9(3):e92562. doi: 10.1371/journal.pone.0092562. eCollection 2014.
Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.
直接的电极/神经元连接是实现视觉假体所需的高分辨率神经元刺激的关键挑战。在生物材料上进行神经元连接通常需要存在神经胶质细胞和/或蛋白质涂层。纳米晶金刚石是一种机械稳定性高的生物材料,在组织电刺激方面具有非常大的电位窗口。使用大鼠的成年视网膜细胞培养物,我们发现神经胶质细胞和视网膜神经元在玻璃和纳米晶金刚石上生长得同样良好。蛋白质涂层的使用提高了细胞存活率,尤其是对于神经胶质细胞。然而,双极神经元似乎即使在与裸露的金刚石直接接触时也能生长。我们通过使用纯化的成年视网膜神经节细胞在有和没有蛋白质涂层的金刚石和玻璃表面接种,研究了神经胶质细胞的存在是否有助于这种直接的神经元/金刚石界面。令人惊讶的是,这些完全分化的自发放电神经元在没有任何蛋白质涂层的纳米晶金刚石上存活得更好。细胞数量更多和神经突更长表明了这种更高的存活率。与它们在有图案的玻璃上的行为相反,当在金刚石上绘制蛋白质图案时,神经元不会优先在涂层区域生长。这项研究突出了纳米晶金刚石有趣的生物相容性特性,允许直接的神经元连接,而神经胶质细胞生长则需要蛋白质涂层。