Mendes Manuel J, Morawiec Seweryn, Simone Francesca, Priolo Francesco, Crupi Isodiana
MATIS CNR-IMM, Via S. Sofia 64, 95123 Catania, Italy.
Nanoscale. 2014 May 7;6(9):4796-805. doi: 10.1039/c3nr06768h.
A novel type of plasmonic light trapping structure is presented in this paper, composed of metal nanoparticles synthesized in colloidal solution and self-assembled in uniform long-range arrays using a wet-coating method. The high monodispersion in size and spherical shape of the gold colloids used in this work allows a precise match between their measured optical properties and electromagnetic simulations performed with Mie theory, and enables the full exploitation of their collective resonant plasmonic behavior for light-scattering applications. The colloidal arrays are integrated in plasmonic back reflector (PBR) structures aimed for light trapping in thin film solar cells. The PBRs exhibit high diffuse reflectance (up to 75%) in the red and near-infrared spectrum, which can pronouncedly enhance the near-bandgap photocurrent generated by the cells. Furthermore, the colloidal PBRs are fabricated by low-temperature (<120 °C) processes that allow their implementation, as a final step of the cell construction, in typical commercial thin film devices generally fabricated in a superstrate configuration.
本文提出了一种新型的等离子体光捕获结构,该结构由在胶体溶液中合成并使用湿涂法自组装成均匀长程阵列的金属纳米颗粒组成。本工作中使用的金胶体在尺寸和形状上具有高度单分散性,这使得它们测量的光学性质与用米氏理论进行的电磁模拟之间能够精确匹配,并能够充分利用其集体共振等离子体行为用于光散射应用。胶体阵列集成在用于薄膜太阳能电池光捕获的等离子体背反射器(PBR)结构中。这些PBR在红色和近红外光谱中表现出高漫反射率(高达75%),这可以显著增强电池产生的近带隙光电流。此外,胶体PBR是通过低温(<120°C)工艺制造的,这使得它们能够在通常以超strate配置制造的典型商业薄膜器件中,作为电池制造的最后一步得以应用。