School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (P. R. China).
Angew Chem Int Ed Engl. 2014 May 12;53(20):5038-43. doi: 10.1002/anie.201309438. Epub 2014 Mar 25.
Probing interactions of biological systems at the molecular level is of great importance to fundamental biology, diagnosis, and drug discovery. A rational bioassay design of lithographically integrating individual point scattering sites into electrical circuits is capable of realizing real-time, label-free biodetection of influenza H1N1 viruses with single-molecule sensitivity and high selectivity by using silicon nanowires as local reporters in combination with microfluidics. This nanocircuit-based architecture is complementary to more conventional optical techniques, but has the advantages of no bleaching problems and no fluorescent labeling. These advantages offer a promising platform for exploring dynamics of stochastic processes in biological systems and gaining information from genomics to proteomics to improve accurate molecular and even point-of-care clinical diagnosis.
在分子水平上探究生物系统的相互作用对于基础生物学、诊断和药物发现至关重要。通过将单个点散射位点合理地整合到电回路中,可以利用硅纳米线作为局部报告器并结合微流控技术,实现对流感 H1N1 病毒的实时、无标记生物检测,具有单分子灵敏度和高选择性。这种基于纳米电路的架构与更传统的光学技术互补,但具有无漂白问题和无荧光标记的优点。这些优点为探索生物系统中随机过程的动力学以及从基因组学到蛋白质组学获取信息以提高准确的分子甚至即时临床诊断提供了一个很有前景的平台。