Suppr超能文献

体内温度变化过程中节律性运动模式的相位维持。

Phase maintenance in a rhythmic motor pattern during temperature changes in vivo.

机构信息

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia;

Department of Biology and Volen Center, Brandeis University, Waltham, Massachusetts;

出版信息

J Neurophysiol. 2014 Jun 15;111(12):2603-13. doi: 10.1152/jn.00906.2013. Epub 2014 Mar 26.

Abstract

Central-pattern-generating neural circuits function reliably throughout an animal's life, despite constant molecular turnover and environmental perturbations. Fluctuations in temperature pose a problem to the nervous systems of poikilotherms because their body temperature follows the ambient temperature, thus affecting the temperature-dependent dynamics of various subcellular components that constitute neuronal circuits. In the crustacean stomatogastric nervous system, the pyloric circuit produces a triphasic rhythm comprising the output of the pyloric dilator, lateral pyloric, and pyloric constrictor neurons. In vitro, the phase relationships of these neurons are maintained over a fourfold change in pyloric frequency as temperature increases from 7°C to 23°C. To determine whether these temperature effects are also found in intact crabs, in the presence of sensory feedback and neuromodulator-rich environments, we measured the temperature dependence of the pyloric frequency and phases in vivo by implanting extracellular electrodes into Cancer borealis and Cancer pagurus and shifting tank water temperature from 11°C to 26°C. Pyloric frequency in the intact crab increased significantly with temperature (Q10 = 2-2.5), while pyloric phases were generally conserved. For a subset of the C. borealis experiments, animals were subsequently dissected and the stomatogastric ganglion subjected to a similar temperature ramp in vitro. We found that the maximal frequency attained at high temperatures in vivo is lower than it is under in vitro conditions. Our results demonstrate that, over a wide temperature range, the phases of the pyloric rhythm in vivo are generally preserved, but that the frequency range is more restricted than it is in vitro.

摘要

中枢模式生成神经回路在动物的一生中可靠地发挥作用,尽管存在持续的分子更替和环境干扰。温度波动对变温动物的神经系统构成了问题,因为它们的体温随环境温度而变化,从而影响构成神经元回路的各种亚细胞成分的温度依赖性动力学。在甲壳类动物的口胃神经系统中,幽门回路产生了一个三相节律,包括幽门扩张神经元、侧幽门神经元和幽门收缩神经元的输出。在体外,随着温度从 7°C 升高到 23°C,幽门频率增加了四倍,这些神经元的相位关系得以维持。为了确定这些温度效应是否也存在于完整的螃蟹中,在存在感觉反馈和富含神经调质的环境中,我们通过将细胞外电极植入 Cancer borealis 和 Cancer pagurus 中,并将水箱温度从 11°C 升高到 26°C,在体内测量了幽门频率和相位的温度依赖性。在完整螃蟹中,幽门频率随温度显著增加(Q10=2-2.5),而幽门相位通常保持不变。对于一部分 C. borealis 实验,动物随后被解剖,并且口胃神经节在体外经历了类似的温度斜坡。我们发现,在体内高温下达到的最大频率低于体外条件下的频率。我们的结果表明,在很宽的温度范围内,体内幽门节律的相位通常得到保留,但频率范围比体外更受限制。

相似文献

引用本文的文献

3
Resilience of circuits to environmental challenge.电路对环境挑战的弹性。
Curr Opin Neurobiol. 2024 Aug;87:102885. doi: 10.1016/j.conb.2024.102885. Epub 2024 Jun 9.

本文引用的文献

4
The effects of temperature on the stability of a neuronal oscillator.温度对神经元振荡器稳定性的影响。
PLoS Comput Biol. 2013;9(1):e1002857. doi: 10.1371/journal.pcbi.1002857. Epub 2013 Jan 10.
6
Temperature and neuronal circuit function: compensation, tuning and tolerance.温度与神经元回路功能:代偿、调谐与耐受。
Curr Opin Neurobiol. 2012 Aug;22(4):724-34. doi: 10.1016/j.conb.2012.01.008. Epub 2012 Feb 10.
9
New moves in motor control.运动控制的新动向。
Curr Biol. 2011 Jul 12;21(13):R513-24. doi: 10.1016/j.cub.2011.05.029.
10
Neuromodulation and flexibility in Central Pattern Generator networks.中枢模式发生器网络中的神经调节和灵活性。
Curr Opin Neurobiol. 2011 Oct;21(5):685-92. doi: 10.1016/j.conb.2011.05.011. Epub 2011 Jun 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验