Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan.
Princess Margaret Hospital, Toronto, Ontario, Canada.
Pract Radiat Oncol. 2013 Jan-Mar;3(1):67-73. doi: 10.1016/j.prro.2012.03.004. Epub 2012 Apr 5.
With increased use of stereotactic body radiotherapy (SBRT) for early-stage lung cancer, quantification of intrafraction variation (IFV) is required to develop adequate target margins.
A total of 409 patients with 427 tumors underwent 1593 fractions of lung SBRT between 2005 and 2010. Translational target position correction of the mean target position (MTP) was performed via onboard cone-beam computed tomography (CBCT). IFV was measured as the difference in MTP between the post-correction CBCT and the post-treatment CBCT and was calculated on 1337 fractions.
Mean IFV-MTP was 0.0 ± 1.7 mm, 0.6 ± 2.2 mm, and -1.0 ± 2.0 mm in the mediolateral (ML), anteroposterior (AP), and craniocaudal (CC) dimensions, and the vector was 3.1 ± 2.0 mm; 67.8% of fractions had an IFV vector greater than 2 mm, and 14.3% greater than 5 mm. Weight, excursion, forced expiratory volume in the first second of expiration, diffusing capacity of the lung for carbon monoxide, and treatment time were found to be significant predictors of IFV-MTP greater than 2 mm and 5 mm. Significant differences in IFV-MTP were seen between immobilization devices with a mean IFV of 2.3 ± 1.4 mm, 2.7 ± 1.6 mm, 3.0 ± 1.7 mm, 3.0 ± 2.5 mm, 3.3 ± 1.7 mm, and 3.3 ± 2.2 mm for the body frame, hybrid device, alpha cradle, body fix, wing board, and no immobilization, respectively (P < .001). Estimated required target margins for the entire cohort were 4.3, 6.1, and 6.0 mm in the ML, AP, and CC dimensions, with differences in margins based on immobilization.
IFV is dependent on several factors: immobilization device, treatment time, pulmonary function, and bodyweight. These factors are responsible for a significant portion of target margins with a mean IFV vector of 3 mm. Target margins of 6 mm or greater are required to encompass IFV in all dimensions when using four-dimensional CT with CBCT without respiratory gating or compression.
随着立体定向体部放疗(SBRT)在早期肺癌中的应用增加,需要量化分次内变化(IFV)以制定足够的靶区边界。
2005 年至 2010 年间,共有 409 例 427 个肿瘤的患者接受了 1593 次肺部 SBRT 治疗。通过机载锥形束 CT(CBCT)对平均靶区位置(MTP)进行平移目标位置校正。IFV 是通过校正后的 CBCT 与治疗后的 CBCT 之间的 MTP 差值测量的,在 1337 个分次中进行计算。
在 ML、AP 和 CC 方向,IFV-MTP 的平均值分别为 0.0±1.7mm、0.6±2.2mm 和-1.0±2.0mm,向量为 3.1±2.0mm;67.8%的分次 IFV 向量大于 2mm,14.3%的分次 IFV 向量大于 5mm。体重、位移、呼气第一秒用力呼气量、一氧化碳弥散量和治疗时间被发现是 IFV-MTP 大于 2mm 和 5mm 的显著预测因素。在使用不同的固定装置时,IFV-MTP 存在显著差异,体架、混合装置、alpha 托架、body fix、翼板和无固定装置的 IFV-MTP 平均值分别为 2.3±1.4mm、2.7±1.6mm、3.0±1.7mm、3.0±2.5mm、3.3±1.7mm 和 3.3±2.2mm(P<0.001)。整个队列的估计靶区边界分别为 4.3、6.1 和 6.0mm,在 ML、AP 和 CC 方向,根据固定装置的不同,边界存在差异。
IFV 取决于几个因素:固定装置、治疗时间、肺功能和体重。这些因素是导致靶区边界的重要部分,平均 IFV 向量为 3mm。在使用 4DCT 结合 CBCT 且无呼吸门控或压缩时,所有维度的 IFV 都需要 6mm 或更大的靶区边界。