Bernau Ksenija, Lewis Christina M, Petelinsek Anna M, Benink Hélène A, Zimprich Chad A, Meyerand M Elizabeth, Suzuki Masatoshi, Svendsen Clive N
University of Wisconsin-Madison, 4325a Veterinary Medicine Building, 2015 Linden Dr., Madison, WI 53706, USA.
University of Wisconsin-Madison, 1005 Wisconsin Institute for Medical Research, 1111 Highland Ave., Madison, WI 53705, USA.
J Neurosci Methods. 2014 May 15;228:67-78. doi: 10.1016/j.jneumeth.2014.03.005. Epub 2014 Mar 24.
Stem cell therapies appear promising for treating certain neurodegenerative disorders and molecular imaging methods that track these cells in vivo could answer some key questions regarding their survival and migration. Bioluminescence imaging (BLI), which relies on luciferase expression in these cells, has been used for this purpose due to its high sensitivity.
In this study, we employ BLI to track luciferase-expressing human neural progenitor cells (hNPC(Luc2)) in the rat striatum long-term.
We show that hNPC(Luc2) are detectable in the rat striatum. Furthermore, we demonstrate that using this tracking method, surviving grafts can be detected in vivo for up to 12 weeks, while those that were rejected do not produce bioluminescence signal. We also demonstrate the ability to discern hNPC(Luc2) contralateral migration.
Some of the advantages of BLI compared to other imaging methods used to track progenitor/stem cells include its sensitivity and specificity, low background signal and ability to distinguish surviving grafts from rejected ones over the long term while the blood-brain barrier remains intact.
These new findings may be useful in future preclinical applications developing cell-based treatments for neurodegenerative disorders.
干细胞疗法在治疗某些神经退行性疾病方面似乎很有前景,而在体内追踪这些细胞的分子成像方法可以回答一些关于它们存活和迁移的关键问题。生物发光成像(BLI)依赖于这些细胞中荧光素酶的表达,因其高灵敏度已被用于此目的。
在本研究中,我们采用BLI长期追踪大鼠纹状体内表达荧光素酶的人神经祖细胞(hNPC(Luc2))。
我们表明在大鼠纹状体中可检测到hNPC(Luc2)。此外,我们证明使用这种追踪方法,在体内可检测到存活的移植细胞长达12周,而那些被排斥的移植细胞则不产生生物发光信号。我们还展示了辨别hNPC(Luc2)对侧迁移的能力。
与用于追踪祖细胞/干细胞的其他成像方法相比,BLI的一些优点包括其灵敏度和特异性、低背景信号以及在血脑屏障保持完整的情况下长期区分存活移植细胞和被排斥移植细胞的能力。
这些新发现可能对未来开发用于神经退行性疾病的基于细胞的治疗方法的临床前应用有用。